Adrian Goldstein - Transparent Ceramics

Здесь есть возможность читать онлайн «Adrian Goldstein - Transparent Ceramics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Transparent Ceramics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Transparent Ceramics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A detailed account of various applications and uses of transparent ceramics and the future of the industry In
, readers will discover the necessary foundation for understanding transparent ceramics (TCs) and the technical and economic factors that determine the overall worth of TCs. This book provides readers with a thorough history of TCs, as well as a detailed account of the materials, engineering and applications of TC in its various forms; fabrication and characterization specifics are also described. With this book, researchers, engineers, and students find a definitive guide to past and present use cases, and a glimpse into the future of TC materials.
The book covers a variety of TC topics, including:
● The methods employed for materials produced in a transparent state
● Detailed applications of TCs for use in lasers, IR domes, armor-windows, and various medical prosthetics
● A review of traditionally used transparent materials that highlights the benefits of TCs
● Theoretical science and engineering theories presented in correlation with learned data
● A look at past, present, and future use-cases of TCs 
This insightful guide to ceramics that can be fabricated into bulk transparent parts will serve as a must-read for professionals in the industry, as well as students looking to gain a more thorough understanding of the field.

Transparent Ceramics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Transparent Ceramics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Library of Congress Cataloging-in-Publication Data

Names: Goldstein, Adrian, 1951- author. | Krell, Andreas, author. | Burshtein, Zeev, author.

Title: Transparent ceramics : materials, engineering, and applications / Adrian Goldstein, Andreas Krell, Zeev Burshtein.

Description: First edition. | Hoboken, New Jersey : John Wiley & Sons, Inc., 2020.

Identifiers: LCCN 2019035288 (print) | LCCN 2019035289 (ebook) | ISBN 9781119429494 (hardback) | ISBN 9781119429487 (adobe pdf) | ISBN 9781119429555 (epub)

Subjects: LCSH: Transparent ceramics. | Ceramic materials.

Classification: LCC QC378.5 .G65 2010 (print) | LCC QC378.5 (ebook) | DDC 620.1/404295—dc23

LC record available at https://lccn.loc.gov/2019035288

LC ebook record available at https://lccn.loc.gov/2019035289

Cover Design: Wiley

Cover Image: Corporations/Companies – Used with permission Fraunhofer IKTS

I dedicate this book to my mother Sia and my wife Piticul

- Adrian Goldstein

Foreword

Who had imagined in 1964 that the first solid-state laser of Nd 3+-doped Y 3Al 5O 12(YAG) single crystals might be replaced by Nd 3+-doped YAG transparent laser ceramics? Requests to fabricate such transparent ceramics are at the frontier of materials science and everyone considered at this time that transparent ceramic materials could not be used for laser or optical materials. However, dreams came true in 1995 and now garnet transparent laser ceramics are commercialized and have been extended also to Ce 3+-doped YAG as phosphors associated with blue LED for high power white lighting. Recently, the list of application of transparent ceramics, for which some of them are highly sophisticated, for laser media, phosphors, scintillators, armor windows, infrared domes, and electro-optical components have widely increase in all domains and have impacted our daily life.

This book addresses precise topics on available transparent ceramics (TCs) materials, how they are processed, their applications, and aspects of the progress made in their engineering as well as our scientific understanding. Adrian Goldstein, Andreas Krell, and Zeev Burshtein, well-known authorities in the international community of the ceramics, animated during all their scientific lives by the passion of the field and the desire to communicate it, were able to pause and review carefully the accomplishments of this period, the remaining challenges, and future prospects.

Clearly, the data presented are well explained, in correlation with the theoretical science and engineering background. This book answers well with the evolution of the transparent ceramics so that it will successfully help students and researchers for any developments still in a laboratory stage. As an example, data help to understand relationships between microstructures (porosity and size distribution of pores) and optical properties, and also processing strategies of densification and transparency. Their upgrading in the near future has to be relevant for industrial operations and will likely lead to significantly strengthen the economic relevance of the transparent ceramics.

Students, scientists, and engineers working with ceramics should get this book providing extensive references to contemporary works and being a basis for studying the field. It covers applications through detailed case studies and therefore a comprehensive guide to the current status of transparent ceramics, well suited to readers who wish to use it, either to understand these materials or to solve specific problems.

UCB Lyon 1, France

Georges Boulon

Emeritus Professor

Acknowledgments

We would like to thank some of the people who, in one way or other, had helped us in bringing this book to life: Prof. Julius Menessy, Dr. Michael Katz, Prof. Georges Boulon, Smadar Karpas, Prof. Ken-ichi Ueda, and Prof. Lisa Klein.

Dr. Zeev Burshtein has authored Sections: 2.1– 2.5(with minor contributions from A. Krell and A. Goldstein) and Sections 5.2.9.1.1–5.2.9.1.3 (included).

General Abbreviations

The “[]” contains units for parameter or molar concentration.

A absorptance
A BET powder specific surface area [m 2/g], determined by the same calculation model applied to experimental gas adsorption data
AR anti-reflective
ArS sintering under 1 atm. of argon
AS sintering under 1 atm. of air
a-SiO 2(or other amorphous silica
chemical compound)
Vol%, atm.% or mol % volume, atomic or molar percentage
wt.% weight percentage
B magnetic induction (or magnetic flux density) [ T (=10 4G (the gauss (G) is used in (cgs system)))]
BD bulk density (g/cm 3or % of TD )
BD f fired state density
BD g green-body density
BET Brunauer–Emmett–Teller
c cubic lattice
CAD computer-assisted design
CAM computer-assisted machining
CCT correlated color temperature
CF crystal field
CFT crystal field theory (used for electronic spectra interpretation)
CIE commission int. de l`èclairage
CRI color rendition index
CVD chemical vapor deposition
CW continuous wave laser
D 0 ionic diffusion coefficient at standard temperature [cm 2or m 2/s]
D 50 median particles size in a distribution
D BET equivalent particle diameter [nm] as calculated by BET method
DTA derivatographic thermal analysis
E Young modulus [GPa]
EDS (EDX) energy dispersive X-ray spectroscopy (for elemental chemical analysis)
EFG edge defined film fed growth (technique for crystals growth)
EMPA electron microscope probe elemental analysis
EMR electromagnetic radiation
EO electro-optic
EPR electron paramagnetic resonance
ESR electron spin resonance
FEA finite element analysis
FIR far infrared subdomain (15–1000 μm)
FOG (or FOX) fluoro-oxide glass
GB grain boundaries
GS grain size
GSM maximal GS
GSm minimal GS
H magnetic field strength [A/m; Oe (in cgs system)]
h Planck's constant
HAADF high angle annular dark field imaging
HIP hot isostatic pressing
HK hardness measured with the Knoop indenter
HP hot pressing
HR-SEM high resolution SEM
HR-TEM high resolution TEM
HV hardness measured with the Vickers indenter
IR infrared domain of the spectrum
k or k B Boltzmann's constant
k wave vector (magnitude is the wave number)
K Ic [MPa m 0.5]
LCD liquid crystal display
LED light-emitting diode
LF ligand field
LFT crystal field theory improved by consideration of covalency
m monoclinic
M b grain-boundaries migration rate in pore-free matrix
MIR middle domain of IR (2.5–15 μm)
MW microwaves (EMR of wavelength 1 mm to ∼3 dm)
N C critical coordination number, in particles, of pores
NIR near infrared subdomain of the IR (0.75–2.5 μm)
NUV near ultraviolet subdomain (300–380 nm)
OLED organic light emitting diode
op open porosity (%)
OPA optical parameter amplifier
OPA–CPA amplifier based on chirped pulse amplification
PCA polycrystalline (ceramic) alumina
PECS pulsed electric current sintering (alternative to SPS)
PL photo luminescence
PLE photo luminescent emission
PLED power LED
PLZT La containing PZT
PMN plumb magnesium niobate
Po porosity [vol%]
P oSD pore size distribution
PS pressureless (viz., at around 1 atm. of gas pressure) sintering
PSD particle size distribution
PT ceramic with composition located in the PbO–TiO 2system
PVDF polyvinylidene fluoride
PW power [W]
PZT ceramic with composition located in the PbO–ZrO 2–TiO 2system; main source of piezoceramics
R gas constant
R reflectance
RE + rare-Earth cation
RIT real in-line transmission
RT room temperature
RTP ready-to-press powder
S scattered fraction of incident EMR beam intensity
SEM scanning electron microscope
SIMS secondary ions mass spectroscopy
SOX solid oxides
SPS spark-plasma sintering
STEM scanning TEM
t tetragonal
t a 0 post-sintering annealing (mostly in air) temperature
t f melting (fusion) temperature
t g glass transition temperature
t l liquidus temperature (phase diagrams)
t s 0 sintering temperature
T transmittance ( T % transmission percentage)
T % transmission (in %) as a function of wavelength
TC transparent ceramic
TD or ρ theoretical density [g/cm 3]
TEM transmission mode electron microscope
TEOS tetra-ethyl-ortho-silicate
TFT total forward transmission
TGC transparent glass-ceramic
TGG Terbium, Gadolinium garnet
TM + transition element cation
TRS transversal rupture strength
T-YAG (or other transparent YAG
transparent ceramic
compound)
TZP tetragonal zirconia polycrystals
UV ultraviolet domain of the spectrum (10 to ∼380 nm)
VIS segment of the electromagnetic radiation spectrum to which the human eye is sensitive (∼0.38 to ∼0.75 μm)
VS sintering under vacuum
WLED white light emitting LED
X powder particle size
XRD X-ray diffraction
YAG Yttrium, Aluminum garnet
YSAG scandium containing
[K −1] thermal expansion coefficient [ °C/K]
γ surface tension [N/m]
Δ small variation
ε extinction coeff. [l/(mol cm)]
λ wavelength [nm, μm]
λ th thermal conductivity [W/Km]
ν frequency [Hz]
ν - wave number [cm −1]
τ time
φ phase of wave

1 Introduction

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Transparent Ceramics»

Представляем Вашему вниманию похожие книги на «Transparent Ceramics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Transparent Ceramics»

Обсуждение, отзывы о книге «Transparent Ceramics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x