Dan Sullivan - Official Google Cloud Certified Professional Data Engineer Study Guide

Здесь есть возможность читать онлайн «Dan Sullivan - Official Google Cloud Certified Professional Data Engineer Study Guide» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Official Google Cloud Certified Professional Data Engineer Study Guide: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Official Google Cloud Certified Professional Data Engineer Study Guide»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The proven Study Guide that prepares you for this new Google Cloud exam The 
, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. 
Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, 
is your ace in the hole for deploying and managing analytics and machine learning applications. 
• Build and operationalize storage systems, pipelines, and compute infrastructure
• Understand machine learning models and learn how to select pre-built models
• Monitor and troubleshoot machine learning models
• Design analytics and machine learning applications that are secure, scalable, and highly available. 
This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.

Official Google Cloud Certified Professional Data Engineer Study Guide — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Official Google Cloud Certified Professional Data Engineer Study Guide», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Follow Valerie’s contributions to technical blogs on Twitter at dataindataout.

CONTENTS

1 Cover

2 Acknowledgments Acknowledgments I have been fortunate to work again with professionals from Waterside Productions, Wiley, and Google to create this Study Guide. Carole Jelen, vice president of Waterside Productions, and Jim Minatel, associate publisher at John Wiley & Sons, continue to lead the effort to create Google Cloud certification guides. It was a pleasure to work with Gary Schwartz, project editor, who managed the process that got us from outline to a finished manuscript. Thanks to Christine O’Connor, senior production editor, for making the last stages of book development go as smoothly as they did. I was also fortunate to work with Valerie Parham-Thompson again. Valerie’s technical review improved the clarity and accuracy of this book tremendously. Thank you to the Google Cloud subject-matter experts who reviewed and contributed to the material in this book: Name Title Damon A. Runion Technical Curriculum Developer, Data Engineering Julianne Cuneo Data Analytics Specialist, Google Cloud Geoff McGill Customer Engineer, Data Analytics Susan Pierce Solutions Manager, Smart Analytics and AI Rachel Levy Cloud Data Specialist Lead Dustin Williams Data Analytics Specialist, Google Cloud Gbenga Awodokun Customer Engineer, Data and Marketing Analytics Dilraj Kaur Big Data Specialist Rebecca Ballough Data Analytics Manager, Google Cloud Robert Saxby Staff Solutions Architect Niel Markwick Cloud Solutions Architect Sharon Dashet Big Data Product Specialist Barry Searle Solution Specialist - Cloud Data Management Jignesh Mehta Customer Engineer, Cloud Data Platform and Advanced Analytics My sons James and Nicholas were my first readers, and they helped me to get the manuscript across the finish line. This book is dedicated to Katherine, my wife and partner in so many adventures.

3 About the Author About the Author Dan Sullivan is a principal engineer and software architect. He specializes in data science, machine learning, and cloud computing. Dan is the author of the Official Google Cloud Certified Professional Architect Study Guide (Sybex, 2019), Official Google Cloud Certified Associate Cloud Engineer Study Guide (Sybex, 2019), NoSQL for Mere Mortals (Addison-Wesley Professional, 2015), and several LinkedIn Learning courses on databases, data science, and machine learning. Dan has certifications from Google and AWS, along with a Ph.D. in genetics and computational biology from Virginia Tech.

4 About the Technical Editor About the Technical Editor Valerie Parham-Thompson has experience with a variety of open source data storage technologies, including MySQL, MongoDB, and Cassandra, as well as a foundation in web development in software-as-a-service (SaaS) environments. Her work in both development and operations in startups and traditional enterprises has led to solid expertise in web-scale data storage and data delivery. Valerie has spoken at technical conferences on topics such as database security, performance tuning, and container management. She also often speaks at local meetups and volunteer events. Valerie holds a bachelor’s degree from the Kenan Flagler Business School at UNC-Chapel Hill, has certifications in MySQL and MongoDB, and is a Google Certified Professional Cloud Architect. She currently works in the Open Source Database Cluster at Pythian, headquartered in Ottawa, Ontario. Follow Valerie’s contributions to technical blogs on Twitter at dataindataout .

5 Introduction

6 Assessment Test

7 Answers to Assessment Test

8 Chapter 1 Selecting Appropriate Storage Technologies From Business Requirements to Storage Systems Technical Aspects of Data: Volume, Velocity, Variation, Access, and Security Types of Structure: Structured, Semi-Structured, and Unstructured Schema Design Considerations Exam Essentials Review Questions

9 Chapter 2 Building and Operationalizing Storage Systems Cloud SQL Cloud Spanner Cloud Bigtable Cloud Firestore BigQuery Cloud Memorystore Cloud Storage Unmanaged Databases Exam Essentials Review Questions

10 Chapter 3 Designing Data Pipelines Overview of Data Pipelines GCP Pipeline Components Migrating Hadoop and Spark to GCP Exam Essentials Review Questions

11 Chapter 4 Designing a Data Processing Solution Designing Infrastructure Designing for Distributed Processing Migrating a Data Warehouse Exam Essentials Review Questions

12 Chapter 5 Building and Operationalizing Processing Infrastructure Provisioning and Adjusting Processing Resources Monitoring Processing Resources Exam Essentials Review Questions

13 Chapter 6 Designing for Security and Compliance Identity and Access Management with Cloud IAM Using IAM with Storage and Processing Services Data Security Ensuring Privacy with the Data Loss Prevention API Legal Compliance Exam Essentials Review Questions

14 Chapter 7 Designing Databases for Reliability, Scalability, and Availability Designing Cloud Bigtable Databases for Scalability and Reliability Designing Cloud Spanner Databases for Scalability and Reliability Designing BigQuery Databases for Data Warehousing Exam Essentials Review Questions

15 Chapter 8 Understanding Data Operations for Flexibility and Portability Cataloging and Discovery with Data Catalog Data Preprocessing with Dataprep Visualizing with Data Studio Exploring Data with Cloud Datalab Orchestrating Workflows with Cloud Composer Exam Essentials Review Questions

16 Chapter 9 Deploying Machine Learning Pipelines Structure of ML Pipelines GCP Options for Deploying Machine Learning Pipeline Exam Essentials Review Questions

17 Chapter 10 Choosing Training and Serving Infrastructure Hardware Accelerators Distributed and Single Machine Infrastructure Edge Computing with GCP Exam Essentials Review Questions

18 Chapter 11 Measuring, Monitoring, and Troubleshooting Machine Learning Models Three Types of Machine Learning Algorithms Deep Learning Engineering Machine Learning Models Common Sources of Error in Machine Learning Models Exam Essentials Review Questions

19 Chapter 12 Leveraging Prebuilt Models as a Service Sight Conversation Language Structured Data Exam Essentials Review Questions

20 Appendix Answers to Review Questions Chapter 1: Selecting Appropriate Storage Technologies Chapter 2: Building and Operationalizing Storage Systems Chapter 3: Designing Data Pipelines Chapter 4: Designing a Data Processing Solution Chapter 5: Building and Operationalizing Processing Infrastructure Chapter 6: Designing for Security and Compliance Chapter 7: Designing Databases for Reliability, Scalability, and Availability Chapter 8: Understanding Data Operations for Flexibility and Portability Chapter 9: Deploying Machine Learning Pipelines Chapter 10: Choosing Training and Serving Infrastructure Chapter 11: Measuring, Monitoring, and Troubleshooting Machine Learning Models Chapter 12: Leveraging Prebuilt Models as a Service

21 Index

22 End User License Agreement

List of Tables

1 Chapter 1 Table 1.1 Table 1.2 Table 1.3 Table 1.4 Table 1.5 Table 1.6 Table 1.7

2 Chapter 9Table 9.1

3 Chapter 11Table 11.1Table 11.2Table 11.3

List of Illustrations

1 Chapter 1 Figure 1.1 Choosing a storage technology in GCP Figure 1.2 Example graph of friends

2 Chapter 2 Figure 2.1 Basic Cloud SQL configuration Figure 2.2 Optional configuration parameters in Cloud SQL Figure 2.3 Configuring Cloud Spanner Figure 2.4 Configuring a Bigtable cluster Figure 2.5 Cost of a three-node Bigtable production cluster Figure 2.6 BigQuery interactive interface with sample query

3 Chapter 3Figure 3.1 A simple directed graphFigure 3.2 A simple cyclic graphFigure 3.3 An example ingestion stage of a data pipelineFigure 3.4 Data pipeline with transformationsFigure 3.5 Example pipeline DAG with storageFigure 3.6 Complete data pipeline from ingestion to analysisFigure 3.7 A stream with sliding and tumbling three windowFigure 3.8 Data pipeline with both a hot path and a cold pathFigure 3.9 Creating a Cloud Dataflow job in the console using a templateFigure 3.10 Specifying parameters for the Word Count Template

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Official Google Cloud Certified Professional Data Engineer Study Guide»

Представляем Вашему вниманию похожие книги на «Official Google Cloud Certified Professional Data Engineer Study Guide» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Official Google Cloud Certified Professional Data Engineer Study Guide»

Обсуждение, отзывы о книге «Official Google Cloud Certified Professional Data Engineer Study Guide» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x