Jacques Simon - Continuous Functions

Здесь есть возможность читать онлайн «Jacques Simon - Continuous Functions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Continuous Functions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Continuous Functions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Continuous Functions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Continuous Functions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Olivier BESSON, Fulbert MIGNOT, Nicolas DEPAUW, and Didier BRESCH also provided many improvements, in form and in substance.

Pierre DREYFUSS gave me insight into the necessity of simply connected domains for the existence of primitives with Poincaré’s condition, as explained on p. 209 in the comment Is simple connectedness necessary for gluing together local primitives?

Joshua PEPPER spent much time discussing about the best way to adapt this work in English.

Thank you, my friends.

Jacques SIMON

Chapdes-Beaufort

April 2020

Notes

1 1 Students? What might I have answered if one of my MAS students in 1988 had asked for more details about the de Rham duality theorem that I used to obtain the pressure in the Navier-Stokes equations? Perhaps I could say that “Jacques-Louis LIONS, my supervisor, wrote that it follows from the de Rham cohomology theorem, of which I understand neither the statement, nor the proof, nor why it implies the result that we are using.” What a despicably unscientific appeal to authority!This question was the starting point of this work: writing proofs that I can explain to my students for every result that I use. It took me 5 years to find the “elementary” proof of the orthogonality theorem (Theorem 9.2, p. 194) on the existence of the primitives of a field q. I needed a way to obtain fr q • Ai = 0 for every closed path r from the condition fn q • y = 0 for every divergence-free y. It gave me the greatest mathematical satisfaction I have ever experienced to explicitly construct an incompressible tubular flow (see p. 184). Twenty-five years later, I am finally ready to answer any other questions from my (very persistent) students.

2 2 Appeal to the reader. Many important results lack historical notes because I am not familiar with their origins. I hope that my readers will forgive me for these omissions and any injustices they may discover. And I encourage the scholars among you to notify me of any improvements for future editions!

Familiarization with Semi-normed Spaces

A semi-normed space E is a vector space endowed with a family Continuous Functions - изображение 20of semi-norms.

— The set NE indexing the semi-norms is, a priori , arbitrary.

A normedspace is the special case where this family simply consists of a single norm.

— Every locally convex topological vector space can be endowed with a family of semi-norms that generates its topology (Neumann’s theorem).

— We only consider separated spaces, namely in which || u || E;v= 0 for every vNE , then u = 0 E .

Working with semi-normed spaces:

unu in E means that || unu || E;v→ 0 for every vNE .

U is bounded in E means that Continuous Functions - изображение 21for every vNE .

T is continuousfrom F into E at the point u means that, for every vNE and ϵ > 0, there exists a finite set M of NF and η > 0 such that implies Examples realvalued function spaces The space C bΩ of - фото 22implies Examples realvalued function spaces The space C bΩ of continuous - фото 23.

Examples — real-valued function spaces:

— The space C b(Ω) of continuous and bounded functions is endowed with the norm C Ω is endowed with the seminorms indexed by the compact sets K Ω Lp - фото 24

C (Ω) is endowed with the semi-norms indexed by the compact sets K Ω Lp Ω is endowed with the norm - фото 25indexed by the compact sets K ⊂ Ω.

Lp (Ω) is endowed with the norm is endowed with the seminorms indexed by the bounded open se - фото 26.

is endowed with the seminorms indexed by the bounded open sets ω such that ϖ - фото 27is endowed with the semi-norms indexed by the bounded open sets ω such that ϖ Ω Examples abstractvalued - фото 28indexed by the bounded open sets ω such that ϖ ⊂ Ω.

Examples — abstract-valued function spaces:

C b(Ω; E ) is endowed with the semi-norms indexed by v NE C Ω E is endowed with the seminorms indexed by the - фото 29indexed by vNE

C (Ω; E ) is endowed with the semi-norms indexed by the compact sets K Ω and v NE L pΩ E is endowed with the - фото 30indexed by the compact sets K ⊂ Ω and vNE

L p(Ω; E ) is endowed with the semi-norms indexed by v NE Examples weak space dual space E weak is endowed - фото 31indexed by vNE .

Examples — weak space, dual space:

E -weak is endowed with the semi-norms indexed by e E E is endowed with the seminorms indexed by the bounded - фото 32indexed by e′E′ .

E′ is endowed with the semi-norms indexed by the bounded sets B of E E weak is endowed with the seminorms - фото 33indexed by the bounded sets B of E .

E′ -weak is endowed with the semi-norms indexed by e E E weak is endowed with the seminorms indexed by e - фото 34indexed by e″E″ .

E′ - *weak is endowed with the semi-norms indexed by e E Neumann spaces and others A sequentially completespace - фото 35indexed by eE .

Neumann spaces and others:

A sequentially completespace is a space in which every Cauchy sequence converges.

A Neumannspace is a sequentially complete separated semi-normed space.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Continuous Functions»

Представляем Вашему вниманию похожие книги на «Continuous Functions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Continuous Functions»

Обсуждение, отзывы о книге «Continuous Functions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x