Jacques Simon - Continuous Functions
Здесь есть возможность читать онлайн «Jacques Simon - Continuous Functions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Continuous Functions
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Continuous Functions: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Continuous Functions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Continuous Functions — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Continuous Functions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
2 iii Continuous Functions Jacques Simon
3 iv First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com © ISTE Ltd 2020 The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2020933955 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-010-2
4 ix
5 x
6 xi
7 xii
8 xiii
9 xiv
10 xv
11 xvi
12 xvii
13 xviii
14 1
15 2
16 3
17 4
18 5
19 6
20 7
21 8
22 9
23 10
24 11
25 12
26 13
27 14
28 15
29 16
30 17
31 18
32 19
33 20
34 21
35 22
36 23
37 24
38 25
39 26
40 27
41 28
42 29
43 30
44 31
45 32
46 33
47 34
48 35
49 36
50 37
51 38
52 39
53 40
54 41
55 42
56 43
57 44
58 45
59 46
60 47
61 48
62 49
63 50
64 51
65 52
66 53
67 54
68 55
69 56
70 57
71 58
72 59
73 60
74 61
75 62
76 63
77 64
78 65
79 66
80 67
81 68
82 69
83 70
84 71
85 72
86 73
87 74
88 75
89 76
90 77
91 78
92 79
93 80
94 81
95 82
96 83
97 84
98 85
99 86
100 87
101 88
102 89
103 90
104 91
105 92
106 93
107 94
108 95
109 96
110 97
111 98
112 99
113 100
114 101
115 102
116 103
117 104
118 105
119 106
120 107
121 108
122 109
123 110
124 111
125 112
126 113
127 114
128 115
129 116
130 117
131 118
132 119
133 120
134 121
135 122
136 123
137 124
138 125
139 126
140 127
141 128
142 129
143 130
144 131
145 132
146 133
147 134
148 135
149 136
150 137
151 138
152 139
153 140
154 141
155 142
156 143
157 144
158 145
159 146
160 147
161 148
162 149
163 150
164 151
165 152
166 153
167 154
168 155
169 156
170 157
171 158
172 159
173 160
174 161
175 162
176 163
177 164
178 165
179 166
180 167
181 168
182 169
183 170
184 171
185 172
186 173
187 174
188 175
189 176
190 177
191 178
192 179
193 180
194 181
195 182
196 183
197 184
198 185
199 186
200 187
201 188
202 189
203 190
204 191
205 192
206 193
207 194
208 195
209 196
210 197
211 198
212 199
213 200
214 201
215 202
216 203
217 204
218 205
219 206
220 207
221 208
222 209
223 210
224 211
225 212
226 213
227 214
228 215
229 216
230 217
231 218
232 219
233 220
234 221
235 222
236 223
237 224
238 225
239 226
240 227
241 228
242 229
243 230
244 231
245 232
246 233
247 234
248 235
249 236
250 237
251 238
252 239
253 240
254 241
255 242
256 243
257 244
258 245
259 246
260 247
261 248
To Claire and Patricia, By your gaiety, “joie de vivre”, and femininity, you have embellished my life, and you have allowed me to conserve the tenacity needed for this endeavor
Analysis for PDEs Set
coordinated by
Jacques Blum
Volume 2
Continuous Functions
Jacques Simon

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
www.iste.co.uk
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
www.wiley.com
© ISTE Ltd 2020
The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2020933955
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-010-2
Introduction
Objective.This book is the second of six volumes in a series dedicated to the mathematical tools for solving partial differential equations derived from physics:
Volume 1: Banach, Frechet, Hilbert and Neumann Spaces;
Volume 2: Continuous Functions;
Volume 3: Distributions;
Volume 4: Lebesgue and Sobolev Spaces;
Volume 5: Traces;
Volume 6: Partial Differential Equations.
This second volume is devoted to the partial differentiation of functions and the construction of primitives, which is its inverse mapping, and to their properties, which will be useful for constructing distributions and studying partial differential equations later.
Target audience.We intended to find simple methods that require a minimal level of knowledge to make these tools accessible to the largest audience possible – PhD candidates, advanced students 1and engineers – without losing generality and even generalizing some standard results, which may be of interest to some researchers.
Originality.The construction of primitives, the Cauchy integral and the weighting with which they are obtained are performed for a function taking values in a Neumann space, that is, a space in which every Cauchy sequence converges.
Neumann spaces.The sequential completeness characterizing these spaces is the most general property of E that guarantees that the integral of a continuous function taking values in E will belong to it, see Case where E is not a Neumann space (§ 4.3, p. 92). This property is more general than the more commonly considered property of completeness, that is the convergence of all Cauchy filters; for example, if E is an infinite-dimensional Hilbert space, then E-weak is a Neumann space but is not complete [Vol. 1, Property (4.11), p. 82].
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Continuous Functions»
Представляем Вашему вниманию похожие книги на «Continuous Functions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Continuous Functions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.