Jacques Simon - Continuous Functions

Здесь есть возможность читать онлайн «Jacques Simon - Continuous Functions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Continuous Functions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Continuous Functions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Continuous Functions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Continuous Functions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2 iii Continuous Functions Jacques Simon

3 iv First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd 27-37 St George’s Road London SW19 4EU UK www.iste.co.uk John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA www.wiley.com © ISTE Ltd 2020 The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2020933955 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-010-2

4 ix

5 x

6 xi

7 xii

8 xiii

9 xiv

10 xv

11 xvi

12 xvii

13 xviii

14 1

15 2

16 3

17 4

18 5

19 6

20 7

21 8

22 9

23 10

24 11

25 12

26 13

27 14

28 15

29 16

30 17

31 18

32 19

33 20

34 21

35 22

36 23

37 24

38 25

39 26

40 27

41 28

42 29

43 30

44 31

45 32

46 33

47 34

48 35

49 36

50 37

51 38

52 39

53 40

54 41

55 42

56 43

57 44

58 45

59 46

60 47

61 48

62 49

63 50

64 51

65 52

66 53

67 54

68 55

69 56

70 57

71 58

72 59

73 60

74 61

75 62

76 63

77 64

78 65

79 66

80 67

81 68

82 69

83 70

84 71

85 72

86 73

87 74

88 75

89 76

90 77

91 78

92 79

93 80

94 81

95 82

96 83

97 84

98 85

99 86

100 87

101 88

102 89

103 90

104 91

105 92

106 93

107 94

108 95

109 96

110 97

111 98

112 99

113 100

114 101

115 102

116 103

117 104

118 105

119 106

120 107

121 108

122 109

123 110

124 111

125 112

126 113

127 114

128 115

129 116

130 117

131 118

132 119

133 120

134 121

135 122

136 123

137 124

138 125

139 126

140 127

141 128

142 129

143 130

144 131

145 132

146 133

147 134

148 135

149 136

150 137

151 138

152 139

153 140

154 141

155 142

156 143

157 144

158 145

159 146

160 147

161 148

162 149

163 150

164 151

165 152

166 153

167 154

168 155

169 156

170 157

171 158

172 159

173 160

174 161

175 162

176 163

177 164

178 165

179 166

180 167

181 168

182 169

183 170

184 171

185 172

186 173

187 174

188 175

189 176

190 177

191 178

192 179

193 180

194 181

195 182

196 183

197 184

198 185

199 186

200 187

201 188

202 189

203 190

204 191

205 192

206 193

207 194

208 195

209 196

210 197

211 198

212 199

213 200

214 201

215 202

216 203

217 204

218 205

219 206

220 207

221 208

222 209

223 210

224 211

225 212

226 213

227 214

228 215

229 216

230 217

231 218

232 219

233 220

234 221

235 222

236 223

237 224

238 225

239 226

240 227

241 228

242 229

243 230

244 231

245 232

246 233

247 234

248 235

249 236

250 237

251 238

252 239

253 240

254 241

255 242

256 243

257 244

258 245

259 246

260 247

261 248

To Claire and Patricia, By your gaiety, “joie de vivre”, and femininity, you have embellished my life, and you have allowed me to conserve the tenacity needed for this endeavor

Analysis for PDEs Set

coordinated by

Jacques Blum

Volume 2

Continuous Functions

Jacques Simon

First published 2020 in Great Britain and the United States by ISTE Ltd and - фото 4

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2020

The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020933955

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-010-2

Introduction

Objective.This book is the second of six volumes in a series dedicated to the mathematical tools for solving partial differential equations derived from physics:

Volume 1: Banach, Frechet, Hilbert and Neumann Spaces;

Volume 2: Continuous Functions;

Volume 3: Distributions;

Volume 4: Lebesgue and Sobolev Spaces;

Volume 5: Traces;

Volume 6: Partial Differential Equations.

This second volume is devoted to the partial differentiation of functions and the construction of primitives, which is its inverse mapping, and to their properties, which will be useful for constructing distributions and studying partial differential equations later.

Target audience.We intended to find simple methods that require a minimal level of knowledge to make these tools accessible to the largest audience possible – PhD candidates, advanced students 1and engineers – without losing generality and even generalizing some standard results, which may be of interest to some researchers.

Originality.The construction of primitives, the Cauchy integral and the weighting with which they are obtained are performed for a function taking values in a Neumann space, that is, a space in which every Cauchy sequence converges.

Neumann spaces.The sequential completeness characterizing these spaces is the most general property of E that guarantees that the integral of a continuous function taking values in E will belong to it, see Case where E is not a Neumann space (§ 4.3, p. 92). This property is more general than the more commonly considered property of completeness, that is the convergence of all Cauchy filters; for example, if E is an infinite-dimensional Hilbert space, then E-weak is a Neumann space but is not complete [Vol. 1, Property (4.11), p. 82].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Continuous Functions»

Представляем Вашему вниманию похожие книги на «Continuous Functions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Continuous Functions»

Обсуждение, отзывы о книге «Continuous Functions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x