William M. White - Geochemistry

Здесь есть возможность читать онлайн «William M. White - Geochemistry» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Geochemistry: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Geochemistry»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A Comprehensive Introduction to the “Geochemist Toolbox” – the Basic Principles of Modern Geochemistry In the new edition of William M. White’s
, undergraduate and graduate students will find each of the core principles of geochemistry covered. From defining key principles and methods to examining Earth’s core composition and exploring organic chemistry and fossil fuels, this definitive edition encompasses all the information needed for a solid foundation in the earth sciences for beginners and beyond. 
For researchers and applied scientists, this book will act as a useful reference on fundamental theories of geochemistry, applications, and environmental sciences. The new edition includes new chapters on the geochemistry of the Earth’s surface (the “critical zone”), marine geochemistry, and applied geochemistry as it relates to environmental applications and geochemical exploration.
● A review of the fundamentals of geochemical thermodynamics and kinetics, trace element and organic geochemistry
● An introduction to radiogenic and stable isotope geochemistry and applications such as geologic time, ancient climates, and diets of prehistoric people
● Formation of the Earth and composition and origins of the core, the mantle, and the crust
● New chapters that cover soils and streams, the oceans, and geochemistry applied to the environment and mineral exploration
In this foundational look at geochemistry, new learners and professionals will find the answer to the essential principles and techniques of the science behind the Earth and its environs.

Geochemistry — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Geochemistry», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Nevertheless, geochemists generally use empirically determined heat capacities. Constant pressure heat capacities are easier to determine, and therefore more generally available and used. For minerals, which are relatively incompressible, the difference between C vand C pis small and can often be neglected. Empirical heat capacity data is generally in the form of the coefficients of polynomial expressions of temperature. The Maier-Kelley formulation is:

(2.102) where a b and c are the empirically determined coefficients The - фото 206

where a , b , and c are the empirically determined coefficients. The Haas–Fisher formulation (Hass and Fisher, 1976) is:

(2.103) with a b c f and g as empirically determined constants The HassFisher - фото 207

with a , b , c , f , and g as empirically determined constants. The Hass–Fisher formulation is more accurate and more widely used in geochemistry and heat capacity data are commonly tabulated this way (e.g., Helgenson, et al., 1978; Berman, 1988; Holland and Powell, 1998). We shall use the Maier−Kelly formulation because it is simpler, and we do not want to become more bogged down in mathematics than necessary.

Figure 210 Vibrational contribution to heat capacity as a function of k T hν - фото 208

Figure 2.10 Vibrational contribution to heat capacity as a function of k T / .

Since these formulae and their associated constants are purely empirical (i.e., neither the equations nor constants have a theoretical basis), they should not be extrapolated beyond the calibrated range.

2.8.5 Relationship of entropy to other state variables

We can now use heat capacity to define the temperature dependency of entropy:

(2.104) 2105 The dependencies on pressure and volume at constant temperature - фото 209

(2.105) The dependencies on pressure and volume at constant temperature are 2106 - фото 210

The dependencies on pressure and volume (at constant temperature) are:

(2.106) Geochemistry - изображение 211

(2.107) Geochemistry - изображение 212

2.8.6 Additive nature of silicate heat capacities

For many oxides and silicates, heat capacities are approximately additive at room temperature. Thus, for example, the heat capacity of enstatite, MgSiO 3,, may be approximated by adding the heat capacities of its oxide components, quartz (SiO 2) and periclase (MgO). In other words, since:

then Substituting values The observed value for t - фото 213

then

Substituting values The observed value for the heat capacity of enstatite at - фото 214

Substituting values:

The observed value for the heat capacity of enstatite at 300 K is 8209 - фото 215

The observed value for the heat capacity of enstatite at 300 K is 82.09 J/mol-K, which differs from our estimate by only 0.1%. For most silicates and oxides, this approach will yield estimates of heat capacities that are within 5% of the observed values. However, this is not true at low temperature. The same calculation for C p-Encarried out using heat capacities at 50 K differs from the observed value by 20%.

The explanation for the additive nature of oxide and silicate heat capacities has to do with the nature of bonding and atomic vibrations. The vibrations that are not fully activated at room temperature are largely dependent on the nature of the individual cation–oxygen bonds and not on the atomic arrangement in complex solids.

2.9 THE THIRD LAW AND ABSOLUTE ENTROPY

2.9.1 Statement of the third law

The entropies of substances tend toward zero as absolute zero temperature is approached, or as Lewis and Randall expressed it:

If the entropy of each element in some crystalline state may be taken as zero at the absolute zero of temperature, every substance has a finite positive entropy, but at absolute zero, the entropy may become zero, and does so become in the case of perfectly crystalline substances .

2.9.2 Absolute entropy

We recall that entropy is proportional to the number of possible arrangements of a system: S = klnΩ. At absolute zero, a perfectly crystalline substance has only one possible arrangement, namely the ground state. Hence Geochemistry - изображение 216.

The implication of this seemingly trivial statement is that we can determine the absolute entropy of substances. We can write the complete differential for S in terms of T and P as:

(2.108) Substituting eqns 2105and 2106into this we have 2109 The coefficient - фото 217

Substituting eqns. 2.105and 2.106into this, we have:

(2.109) The coefficient of thermal expansion is 0 at absolute zero the choice of 1 atm - фото 218

The coefficient of thermal expansion is 0 at absolute zero; the choice of 1 atm for the heat capacity integration is a matter of convenience because C Pmeasurements are conventionally made at 1 atm.

Actually, the absolute entropies of real substances tend not to be zero at absolute zero, which is to say they are not “perfectly crystalline” in the third law sense. A residual entropy, S 0, which reflects such things as mixing of two or more kinds of atoms (elements or even isotopes of the same element) at crystallographically equivalent sites, must also be considered. This configurational entropy is important for some geologically important substances such as feldspars and amphiboles. Configurational entropy can be calculated as:

(2.110) where m jis the total number of atoms in the j thcrystallographic site in - фото 219

where m jis the total number of atoms in the j thcrystallographic site (in atoms per formula unit) and X i,jis the mole fraction of the i thatom (element) in the j thsite (see Example 2.3). We will return to this equation when we consider multicomponent systems.

Example 2.3Configurational entropy

Olivine is an example of a solid solution, which we will discuss at length in Chapter 3. Fe and Mg may substitute for each other in the octahedral site. Assuming that the distribution of Fe and Mg within this site is purely random, what is the configurational entropy of olivine of the composition (Mg 0.8,Fe 0.2) 2SiO 4?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Geochemistry»

Представляем Вашему вниманию похожие книги на «Geochemistry» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Geochemistry»

Обсуждение, отзывы о книге «Geochemistry» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x