Malcolm J. Crocker - Engineering Acoustics

Здесь есть возможность читать онлайн «Malcolm J. Crocker - Engineering Acoustics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Acoustics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Acoustics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive evaluation of the basic theory for acoustics, noise and vibration control together with fundamentals of how this theoretical material can be applied to real world problems in the control of noise and vibration in aircraft, appliances, buildings, industry, and vehicles. The basic theory is presented in elementary form and only of sufficient complication necessary to solve real practical problems. Unnecessary advanced theoretical approaches are not included. In addition to the fundamental material discussed, chapters are included on human hearing and response to noise and vibration, acoustics and vibration transducers, instrumentation, noise and vibration measurements, and practical discussions concerning: community noise and vibration, interior and exterior noise of aircraft, road and rail vehicles, machinery noise and vibration sources, noise and vibration in rapid transit rail vehicles, automobiles, trucks, off road vehicles, and ships. In addition, extensive up to date useful references are included at the end of each chapter for further reading. The book concludes with a glossary on acoustics, noise and vibration

Engineering Acoustics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Acoustics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The sine and cosine terms in Eq. (1.1)can have values of the subscript n equal to 1, 2, 3, …, ∞. Hence, the signal x ( t ) will be made up of a fundamental frequency ω and multiples, 2, 3, 4, …, ∞ times greater. The A 0/2 term represents the D.C. (direct current) component (if present). The n th term of the Fourier series is called the n th harmonic of x ( t ). The amplitude of the n th harmonic is

(1.4) Engineering Acoustics - изображение 9

and its square, Engineering Acoustics - изображение 10, is sometimes called energy of the n th harmonic. Thus, the graph of the sequence картинка 11is called the energy spectrum of x ( t ) and shows the amplitudes of the harmonics.

Example 1.1

Buzz‐saw noise is commonly generated by supersonic fans in modern turbofan aircraft engines. A buzzing sound can be represented by the periodic signal shown in Figure 1.3. Find the Fourier series and the energy spectrum for this signal.

Solution

We are required to represent x ( t ) = At over the interval 0 ≤ t ≤ 1, T = 1, and the fundamental frequency is ω = 2 π / T = 2 π . Then, we determine the corresponding Fourier coefficients using Eqs. (1.3a)and (1.3b)

Therefore substituting for the Fourier coefficients in - фото 12 Therefore substituting for the Fourier coefficients in Eq 11we get - фото 13 Therefore substituting for the Fourier coefficients in Eq 11we get The - фото 14

Therefore, substituting for the Fourier coefficients in Eq. (1.1)we get

The energy spectrum of x t is shown in Figure 14 For this case the - фото 15

The energy spectrum of x ( t ) is shown in Figure 1.4. For this case the frequency spectrum is discrete, described by the Fourier coefficients ( Eq. (1.4)). Note that for a Fourier series with only sine terms, as in Example 1.1, the amplitude of the n th harmonic is C n= | B n|. The energy spectrum has spikes at multiples of the fundamental frequency (harmonics) with a height equal to the value of картинка 16. Thus, the spectrum is a series of spikes at the frequencies ω = 2 πf , and overtones 2 ω = 2 × 2 πf , 3 ω = 3 × 2 πf , … with amplitudes ( A / π ) 2, ( A /2 π ) 2, ( A /3 π ) 2, … respectively.

Figure 13 Periodic sound signal Figure 14 Frequency spectrum of the - фото 17

Figure 1.3 Periodic sound signal.

Figure 14 Frequency spectrum of the periodic signal of Figure 13 132 - фото 18

Figure 1.4 Frequency spectrum of the periodic signal of Figure 1.3.

1.3.2 Nonperiodic Functions and the Fourier Spectrum

Equation (1.1)is known as a Fourier series and can only be applied to periodic signals. Very often a sound signal is not a pure or a complex tone but is impulsive in time. Such a signal might be caused in practice by an impact, explosion, sonic boom, or the damped vibration of a mass‐spring system (see Chapter 2of this book) as shown in Figure 1.2c. Although we cannot find a Fourier series representation of the wave in Figure 1.2c because it is nonperiodic (it does not repeat itself), we can find a Fourier spectrum representation since it is a deterministic signal (i.e. it can be predicted in time). The mathematical arguments become more complicated [1, 7, 9] and will be omitted here. Briefly, the Fourier spectrum may be obtained by assuming that the period of the motion, T , becomes infinite. Then since f = ω /2 π = 1/ T , the fundamental frequency approaches zero and Eq. (1.2)passes from a summation of harmonics to an integral:

(1.5) Just as C nwas complex in Eq 12 X ω is complex in Eq 15 having - фото 19

Just as C nwas complex in Eq. (1.2), X( ω ) is complex in Eq. (1.5), having both a magnitude and a phase. The Fourier spectrum (magnitude), ∣ X( ω )∣, of the wave in Figure 1.2c is plotted to the right of Figure 1.2c. ∣ X( ω )∣may be thought of as the amplitude of the time signal at each value of frequency ω .

1.3.3 Random Noise

So far we have discussed periodic and nonperiodic signals. In many practical cases the sound or vibration signal is not deterministic (i.e. it cannot be predicted) and it is random in time (see Figure 1.5). For a random signal, x ( t ), mathematical descriptions become difficult since we have to use statistical theory [1, 7, 9]. Theoretically, for random signals the Fourier transform X( ω ) does not exist unless we consider only a finite sample length of the random signal, for example, of duration τ in the range 0 < t < τ . Then the Fourier transform is

(1.6) where X ω τ is the finite Fourier transform of x t Note that X ω - фото 20

where X( ω , τ ) is the finite Fourier transform of x ( t ). Note that X( ω ) is defined for both positive and negative frequencies. In the real world x ( t ) must be a real function, which implies that the complex conjugate of Xmust satisfy X(− ω ) = X *( ω ); i.e. X( ω ) exhibits conjugate symmetry. Finite Fourier transforms can easily be calculated with special analog‐to‐digital computers (see Section 1.5).

Figure 15 Random noise signal Example 12 An RC resistancecapacitance - фото 21

Figure 1.5 Random noise signal.

Example 1.2

An R–C (resistance–capacitance) series circuit is a classic first‐order low‐pass filter (see Section 1.4). Transient response describes how energy that is contained in a circuit will become dissipated when no input signal is applied. The transient response of an R–C series circuit (for t > 0) is given by

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Acoustics»

Представляем Вашему вниманию похожие книги на «Engineering Acoustics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Acoustics»

Обсуждение, отзывы о книге «Engineering Acoustics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x