Genome Engineering for Crop Improvement

Здесь есть возможность читать онлайн «Genome Engineering for Crop Improvement» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Genome Engineering for Crop Improvement: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Genome Engineering for Crop Improvement»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering—enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins.
Genome Engineering for Crop Improvement Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Genome Engineering for Crop Improvement», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

112 O'Brien, A. and Bailey, T.L. (2014). GT‐Scan: identifying unique genomic targets. Bioinformatics 30 (18): 2673–2675.

113 Odipio, J., Alicai, T., Ingelbrecht, I. et al. (2017). Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8: 1780.

114 Ortigosa, A., Gimenez‐Ibanez, S., Leonhardt, N., and Solano, R. (2019). Design of a bacterial speck resistant tomato by CRISPR/Cas9‐mediated editing of Sl JAZ 2. Plant Biotechnology Journal 17 (3): 665–673.

115 Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site‐directed mutagenesis in Arabidopsis using custom‐designed zinc finger nucleases. Proceedings of the National Academy of Sciences 107 (26): 12034–12039.

116 Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry 70: 313–340.

117 Park, J., Bae, S., and Kim, J.S. (2015). Cas‐designer: a web‐based tool for choice of CRISPR‐Cas9 target sites. Bioinformatics 31 (24): 4014–4016.

118 Parry, M.A.J. and Hawkesford, M.J. (2012). An integrated approach to crop genetic improvement F. Journal of Integrative Plant Biology 54 (4): 250–259.

119 Peng, A., Chen, S., Lei, T. et al. (2017). Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnology Journal 15 (12): 1509–1519.

120 Prykhozhij, S.V., Vinothkumar Rajan, D.G., and Berman, J.N. (2015). CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10 (3): e0119372.

121 Qi, L.S., Larson, M.H., Gilbert, L.A. et al. (2013). Repurposing CRISPR as an RNA‐guided platform for sequence‐specific control of gene expression. Cell 152 (5): 1173–1183.

122 Ramirez, C.L., Foley, J.E., Wright, D.A. et al. (2008). Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods 5 (5): 374–375.

123 Ran, F.A., Hsu, P.D., Lin, C.Y. et al. (2013). Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

124 Reyon, D., Kirkpatrick, J.R., Sander, J.D. et al. (2011). ZFNGenome: a comprehensive resource for locating zinc finger nuclease target sites in model organisms. BMC Genomics 12 (1): 83.

125 Rodríguez‐Leal, D., Lemmon, Z.H., Man, J. et al. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell 171 (2): 470–480.

126 Sander, J.D., Zaback, P., Joung, J.K. et al. (2007). Zinc finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research 35 (suppl_2): W599–W605.

127 Sander, J.D., Dahlborg, E.J., Goodwin, M.J. et al. (2011a). Selection‐free zinc‐finger‐nuclease engineering by context‐dependent assembly (CoDA). Nature Methods 8: 67–69.

128 Sander, J.D., Cade, C., Khayter, C. et al. (2011b). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology 29: 697–698.

129 Sauer, N.J., Narváez‐Vásquez, J., Mozoruk, J. et al. (2016). Oligonucleotide‐mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiology 170 (4): 1917–1928.

130 Sedeek, K.E., Mahas, A., and Mahfouz, M. (2019). Plant genome engineering for targeted improvement of crop traits. Frontiers in Plant Science 10: 114.

131 Shan, Q., Wang, Y., Chen, K. et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant 6 (4): 1365–1368.

132 Shan, Q., Wang, Y., Li, J. et al. (2013b). Targeted genome modification of crop plants using the CRISPR‐Cas system. Nature Biotechnology 31: 686–688.

133 Shi, J., Gao, H., Wang, H. et al. (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15 (2): 207–216.

134 Shrestha, A., Khan, A., and Dey, N. (2018). Cis–trans engineering: advances and perspectives on customized transcriptional regulation in plants. Molecular Plant 11 (7): 886–898.

135 Shukla, V.K., Doyon, Y., Miller, J.C. et al. (2009). Precise genome modification in the crop species Zea mays using zinc‐finger nucleases. Nature 459: 437–441.

136 Singh, R., Kuscu, C., Quinlan, A. et al. (2015). Cas9‐chromatin binding information enables more accurate CRISPR off‐target prediction. Nucleic Acids Research 43 (18): e118–e118.

137 Soyk, S., Müller, N.A., Park, S.J. et al. (2016). Variation in the flowering gene SELF PRUNING 5G promotes day‐neutrality and early yield in tomato. Nature Genetics 49: 162–168.

138 Stemmer, M., Thumberger, T., del Sol Keyer, M. et al. (2015). CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10 (4): e0124633.

139 Sternberg, S.H., Redding, S., Jinek, M. et al. (2014). DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9. Nature 507: 62–67.

140 Sun, Y., Zhang, X., Wu, C. et al. (2016). Engineering herbicide‐resistant rice plants through CRISPR/Cas9‐mediated homologous recombination of acetolactate synthase. Molecular Plant 9 (4): 628–631.

141 Sun, Y., Jiao, G., Liu, Z. et al. (2017). Generation of high‐amylose rice through CRISPR/Cas9‐mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science 8: 298.

142 Svitashev, S., Young, J.K., Schwartz, C. et al. (2015). Targeted mutagenesis, precise gene editing, and site‐specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169 (2): 931–945.

143 Tang, W. and Tang, A.Y. (2017). Applications and roles of the CRISPR system in genome editing of plants. Journal of Forestry Research 28 (1): 15–28.

144 Tang, X., Ren, Q., Yang, L. et al. (2019). Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal 17 (7): 1431–1445.

145 Tian, S., Jiang, L., Cui, X. et al. (2018). Engineering herbicide‐resistant watermelon variety through CRISPR/Cas9‐mediated base‐editing. Plant Cell Reports 37 (9): 1353–1356.

146 Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. (2009). High‐frequency modification of plant genes using engineered zinc‐finger nucleases. Nature 459 (7245): 442–445.

147 Tripathi, J.N., Ntui, V.O., Ron, M. et al. (2019). CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology 2 (1): 1–11.

148 Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569–576.

149 Uniyal, A.P., Yadav, S.K., and Kumar, V. (2019). The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. Journal of Plant Biochemistry and Biotechnology 28: 121–132.

150 Upadhyay, S.K. and Sharma, S. (2014). SSFinder: high throughput CRISPR‐Cas target sites prediction tool. BioMed Research International 2014: 742482.

151 Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R. (2013). RNA‐guided genome editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics 3 (12): 2233–2238.

152 Voytas, D.F. (2013). Plant genome engineering with sequence‐specific nucleases. Annual Review of Plant Biology 64: 327–350.

153 Wang, Z., Li, J., Huang, H. et al. (2012). An integrated chip for the high‐throughput synthesis of transcription activator‐like effectors. Angewandte Chemie International Edition 51 (34): 8505–8508.

154 Wang, Y., Cheng, X., Shan, Q. et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 947–951.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Genome Engineering for Crop Improvement»

Представляем Вашему вниманию похожие книги на «Genome Engineering for Crop Improvement» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Genome Engineering for Crop Improvement»

Обсуждение, отзывы о книге «Genome Engineering for Crop Improvement» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x