Genome Engineering for Crop Improvement

Здесь есть возможность читать онлайн «Genome Engineering for Crop Improvement» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Genome Engineering for Crop Improvement: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Genome Engineering for Crop Improvement»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering—enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins.
Genome Engineering for Crop Improvement Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Genome Engineering for Crop Improvement», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

26 Doench, J.G., Hartenian, E., Graham, D.B. et al. (2014). Rational design of highly active sgRNAs for CRISPR‐Cas9–mediated gene inactivation. Nature Biotechnology 32 (12): 1262.

27 Dreier, B., Beerli, R.R., Segal, D.J. et al. (2001). Development of zinc finger domains for recognition of the 5′‐ANN‐3′ family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biological Chemistry 276 (31): 29466–29478.

28 Du, H., Zeng, X., Zhao, M. et al. (2016). Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology 217: 90–97.

29 El‐Mounadi, K., Morales‐Floriano, M.L., and Garcia‐Ruiz, H. (2020). Principles, applications, and biosafety of plant genome editing using CRISPR‐Cas9. Frontiers in Plant Science 11: 56.

30 Endo, A., Masafumi, M., Kaya, H., and Toki, S. (2016). Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports 6: 38169.

31 Endo, M., Mikami, M., and Toki, S. (2016). Biallelic gene targeting in rice. Plant Physiology 170 (2): 667–677.

32 Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3 (11): e3647.

33 Fan, D., Liu, T., Li, C. et al. (2015). Efficient CRISPR/Cas9‐mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5: 12217.

34 Fan, Y., Xin, S., Dai, X. et al. (2020). Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146: 112146.

35 Fauser, F., Schiml, S., and Puchta, H. (2014). Both CRISPR/Cas‐based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal 79: 348–359.

36 Feng, Z., Mao, Y., Xu, N. et al. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Casinduced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111: 4632–4637.

37 Fu, Y., Foden, J.A., Khayter, C. et al. (2013). High‐frequency off‐target mutagenesis induced by CRISPR‐Cas nucleases in human cells. Nature Biotechnology 31 (9): 822–826.

38 Fu, Y., Sander, J.D., Reyon, D. et al. (2014). Improving CRISPR‐Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32 (3): 279.

39 Gallego‐Bartolomé, J., Gardiner, J., Liu, W. et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115 (9): E2125–E2134.

40 Gao, J., Wang, G., Ma, S. et al. (2015). CRISPR/Cas9‐mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87 (1–2): 99–110.

41 Gao, L., Cox, D.B., Yan, W.X. et al. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology 35 (8): 789.

42 Garneau, J.E., Dupuis, M.È., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (7320): 67–71.

43 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences 109 (39): E2579–E2586.

44 Gasparis, S., Przyborowski, M., Kała, M., and Nadolska‐Orczyk, A. (2019). Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA‐guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cell 8 (8): 782.

45 González, M.N., Massa, G.A., Andersson, M. et al. (2020). Reduced enzymatic Browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in Plant Science 10: 1649.

46 Gratz, S.J., Ukken, F.P., Rubinstein, C.D. et al. (2014). Highly specific and efficient CRISPR/Cas9‐catalyzed homology‐directed repair in drosophila. Genetics 196 (4): 961–971.

47 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research 35 (suppl_2): W52–W57.

48 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology 32: 577–582.

49 Han, Y.J. and Kim, J.I. (2019). Application of CRISPR/Cas9‐mediated gene editing for the development of herbicide‐resistant plants. Plant Biotechnology Reports 13: 447–457.

50 Heigwer, F., Kerr, G., Walther, N. et al. (2013). E‐TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Research 41 (20): e190–e190.

51 Heigwer, F., Kerr, G., and Boutros, M. (2014). E‐CRISP: fast CRISPR target site identification. Nature Methods 11 (2): 122.

52 Huang, P., Xiao, A., Zhou, M. et al. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology 29 (8): 699–700.

53 Hummel, A.W., Chauhan, R.D., Cermak, T. et al. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnology Journal 16 (7): 1275–1282.

54 Iqbal, Z., Sattar, M.N., and Shafiq, M. (2016). CRISPR/Cas9: a tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science 7: 475.

55 Jang, G. and Joung, Y.H. (2019). CRISPR/Cas‐mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports 13 (1): 1–10.

56 Jansing, J., Schiermeyer, A., Schillberg, S. et al. (2019). Genome editing in agriculture: technical and practical considerations. International Journal of Molecular Sciences 20 (12): 2888.

57 Ji, X., Wang, D., and Gao, C. (2015). CRISPR editing‐mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science Bulletin 60: 1332.

58 Jia, H., Orbovic, V., Jones, J.B., and Wang, N. (2016). Modification of the PthA4 effector binding elements in type I Cs LOB 1 promoter using Cas9/sg RNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCs LOB 1.3 infection. Plant Biotechnology Journal 14 (5): 1291–1301.

59 Jia, H., Zhang, Y., Orbović, V. et al. (2017). Genome editing of the disease susceptibility gene Cs LOB 1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15 (7): 817–823.

60 Jiang, W., Zhou, H., Bi, H. et al. (2013). Demonstration of CRISPR/Cas9/sgRNA‐mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41 (20): e188–e188.

61 Jiang, W.Z., Henry, I.M., Lynagh, P.G. et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal 15 (5): 648–657.

62 Jiménez, A., Hoff, B., and Revuelta, J.L. (2020). Multiplex genome editing in Ashbya gossypii using CRISPR‐Cpf1. New Biotechnology 57: 29–33.

63 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337 (6096): 816–821.

64 Kang, B.C., Yun, J.Y., Kim, S.T. et al. (2018). Precision genome engineering through adenine base editing in plants. Nature Plants 4 (7): 427–431.

65 Kaur, K., Tandon, H., Gupta, A.K., and Kumar, M. (2015). CrisprGE: a central hub of CRISPR/Cas‐based genome editing. Database 2015: bav055.

66 Kim, H. and Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15 (5): 321–334.

67 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93 (3): 1156–1160.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Genome Engineering for Crop Improvement»

Представляем Вашему вниманию похожие книги на «Genome Engineering for Crop Improvement» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Genome Engineering for Crop Improvement»

Обсуждение, отзывы о книге «Genome Engineering for Crop Improvement» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x