Genome Engineering for Crop Improvement

Здесь есть возможность читать онлайн «Genome Engineering for Crop Improvement» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Genome Engineering for Crop Improvement: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Genome Engineering for Crop Improvement»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

In recent years, significant advancements have been made in the management of nutritional deficiency using genome engineering—enriching the nutritional properties of agricultural and horticultural crop plants such as wheat, rice, potatoes, grapes, and bananas. To meet the demands of the rapidly growing world population, researchers are developing a range of new genome engineering tools and strategies, from increasing the nutraceuticals in cereals and fruits, to decreasing the anti-nutrients in crop plants to improve the bioavailability of minerals and vitamins.
Genome Engineering for Crop Improvement Presents genetic engineering methods for developing edible oil crops, mineral translocation in grains, increased flavonoids in tomatoes, and cereals with enriched iron bioavailability Describes current genome engineering methods and the distribution of nutritional and mineral composition in important crop plants Offers perspectives on emerging technologies and the future of genome engineering in agriculture Genome Engineering for Crop Improvement

Genome Engineering for Crop Improvement — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Genome Engineering for Crop Improvement», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

68 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Research 19 (7): 1279–1288.

69 Kim, D., Kim, J., Hur, J.K. et al. (2016). Genome‐wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology 34 (8): 863.

70 Kim, H.K., Song, M., Lee, J. et al. (2017). In vivo high‐throughput profiling of CRISPR–Cpf1 activity. Nature Methods 14 (2): 153.

71 Kim, H., Kim, S.T., Ryu, J. et al. (2017). CRISPR/Cpf1‐mediated DNA‐free plant genome editing. Nature Communications 8 (1): 1–7.

72 Klap, C., Yeshayahou, E., Bolger, A.M. et al. (2017). Tomato facultative parthenocarpy results from Sl AGAMOUS‐LIKE 6 loss of function. Plant Biotechnology Journal 15 (5): 634–647.

73 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. (2016). Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nature Biotechnology 34 (8): 869.

74 Lawrenson, T., Shorinola, O., Stacey, N. et al. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA‐guided Cas9 nuclease. Genome Biology 16 (1): 258.

75 Lee, K., Zhang, Y., Kleinstiver, B.P. et al. (2019). Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal 17 (2): 362–372.

76 Lei, Y., Lu, L., Liu, H.Y. et al. (2014). CRISPR‐P: a web tool for synthetic single‐guide RNA design of CRISPR‐system in plants. Molecular Plant 7 (9): 1494–1496.

77 Li, T., Huang, S., Jiang, W.Z. et al. (2011). TAL nucleases (TALNs), hybrid proteins composed of TAL effectors and FokI DNAcleavage domain. Nucleic Acids Research 39: 359–372.

78 Li, T., Liu, B., Spalding, M.H. et al. (2012). High‐efficiency TALEN‐based gene editing produces disease‐resistant rice. Nature Biotechnology 30 (5): 390.

79 Li, J.F., Norville, J.E., Aach, J. et al. (2013). Multiplex and homologous recombination‐mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31: 688–691.

80 Li, Z., Liu, Z.B., Xing, A. et al. (2015). Cas9‐guide RNA directed genome editing in soybean. Plant Physiology 169 (2): 960–970.

81 Li, J., Meng, X., Zong, Y. et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants 2 (10): 1–6.

82 Li, M., Li, X., Zhou, Z. et al. (2016). Reassessment of the four yield‐related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science 7: 377.

83 Li, X., Zhou, W., Ren, Y. et al. (2017). High‐efficiency breeding of early‐maturing rice cultivars via CRISPR/Cas9‐mediated genome editing. Journal of Genetics and Genomics= Yi chuan xue bao 44 (3): 175.

84 Li, J., Zhang, H., Si, X. et al. (2017). Generation of thermosensitive male‐sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics= Yi chuan xue bao 44 (9): 465.

85 Li, T., Yang, X., Yu, Y. et al. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36 (12): 1160–1163.

86 Li, B., Rui, H., Li, Y. et al. (2019). Robust CRISPR/Cpf1 (Cas12a)‐mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant Biotechnology Journal 17 (10): 1862–1864.

87 Liang, Z., Zhang, K., Chen, K., and Gao, C. (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41 (2): 63–68.

88 Lin, Y., Fine, E.J., Zheng, Z. et al. (2014). SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research 42 (6): e47–e47.

89 Liu, Y., Han, J., Chen, Z. et al. (2017). Engineering cell signaling using tunable CRISPR–Cpf1‐based transcription factors. Nature Communications 8 (1): 1–8.

90 Lloyd, A., Plaisier, C.L., Carroll, D., and Drews, G.N. (2005). Targeted mutagenesis using zinc‐finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences 102 (6): 2232–2237.

91 Lowder, L.G., Zhang, D., Baltes, N.J. et al. (2015). A CRISPR/ Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology 169: 971–985.

92 Lowder, L.G., Zhou, J., Zhang, Y. et al. (2018). Robust transcriptional activation in plants using multiplexed CRISPR‐Act2.0 and mTALE‐act systems. Molecular Plant 11: 245–256.

93 Ma, M., Ye, A.Y., Zheng, W., and Kong, L. (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. BioMed Research International 2013: 270805.

94 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A. et al. (2008). Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Molecular Cell 31 (2): 294–301.

95 Mahfouz, M.M., Li, L., Shamimuzzaman, M. et al. (2011). De novo‐engineered transcription activator‐like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double‐strand breaks. Proceedings of the National Academy of Sciences of the United States of America 108: 2623–2628.

96 Mahfouz, M.M., Piatek, A., and Stewart, C.N. Jr. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnology Journal 12 (8): 1006–1014.

97 Makarova, K.S., Haft, D.H., Barrangou, R. et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9 (6): 467–477.

98 Mali, P., Aach, J., Stranges, P.B. et al. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 31: 833–838.

99 Malnoy, M., Viola, R., Jung, M.H. et al. (2016). DNA‐free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7 (1904).

100 Mandell, J.G. and Barbas, C.F. (2006). Zinc finger tools: custom DNA‐binding domains for transcription factors and nucleases. Nucleic Acids Research 34 (suppl_2): W516–W523.

101 Marton, I., Zuker, A., Shklarman, E. et al. (2010). Nontransgenic genome modification in plant cells. Plant Physiology 154 (3): 1079–1087.

102 Miao, J., Guo, D., Zhang, J. et al. (2013). Targeted mutagenesis in rice using CRISPR‐Cas system. Cell Research 23 (10): 1233–1236.

103 Miroshnichenko, D.N., Shulga, O.A., Timerbaev, V.R., and Dolgov, S.V. (2019). Achievements, challenges, and prospects in the production of nontransgenic, genome‐edited plants. Applied Biochemistry and Microbiology 55 (9): 825–845.

104 Montague, T.G., Cruz, J.M., Gagnon, J.A. et al. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42 (W1): W401–W407.

105 Moon, S.B., Lee, J.M., Kang, J.G. et al. (2018). Highly efficient genome editing by CRISPR‐Cpf1 using CRISPR RNA with a uridinylate‐rich 3′‐overhang. Nature Communications 9 (1): 1–11.

106 Moscou, M.J. and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TALeffectors. Science 326: 1501.

107 Naito, Y., Hino, K., Bono, H., and Ui‐Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off‐target sites. Bioinformatics 31 (7): 1120–1123.

108 Nakajima, I., Ban, Y., Azuma, A. et al. (2017). CRISPR/Cas9‐mediated targeted mutagenesis in grape. PLoS One 12 (5): e0177966.

109 Neff, K.L., Argue, D.P., Ma, A.C. et al. (2013). Mojo hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 14 (1): 1.

110 Nekrasov, V., Wang, C., Win, J. et al. (2017). Rapid generation of a transgene‐free powdery mildew resistant tomato by genome deletion. Scientific Reports 7 (1): 1–6.

111 Nishitani, C., Hirai, N., Komori, S. et al. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6 (1): 1–8.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Genome Engineering for Crop Improvement»

Представляем Вашему вниманию похожие книги на «Genome Engineering for Crop Improvement» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Genome Engineering for Crop Improvement»

Обсуждение, отзывы о книге «Genome Engineering for Crop Improvement» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x