Y cuando se habla de ambiente puede tratarse del celular (el organismo completo en los unicelulares y el huevo u óvulo en los multicelulares), que es un ente particular solo a disposición de su dueño; o del útero en los mamíferos, también propiedad privada; o del medio exterior, a disposición de todos. Un mismo gen puede dar lugar a proteínas diferentes, según las condiciones del entorno. A veces el producto final depende del tipo de célula en que se lleva a cabo la lectura del gen. Esto es, el efecto está condicionado por el entorno, pues el código genético tiene una lectura que depende del medio en que se expresa. Asimismo, durante el desarrollo embrionario se utiliza información de las células vecinas, esto es, el desarrollo también depende del contexto celular.
Otro factor importante que participa en el desarrollo es un conjunto de proteínas llamado “epigenoma”, que acompaña al genoma y desempeña un papel destacado en la expresión final de los genes, pues sus proteínas actúan acelerando o frenando la acción de algunos de ellos. Se conjetura que el epigenoma es el responsable de enfermedades que afectan de manera muy distinta a gemelos idénticos, como la esquizofrenia, la enfermedad bipolar y el cáncer, porque, aunque al nacer los mellizos idénticos poseen el mismo epigenoma, al crecer se van creando diferencias como respuesta a las fuerzas del ambiente.
El número de genes que conforman el genoma humano no pasa de veinticinco mil, cifra extremadamente baja para nuestras expectativas, dado que un ser humano es de una complejidad suma (se calcula que el “proteoma” humano, es decir, el conjunto de proteínas producidas en el organismo del hombre, está formado por unas cien mil de ellas). Pero se ha descubierto que tan “baja” cifra encierra una sorpresa, pues más de las tres cuartas partes de los genes poseen “personalidad múltiple”, esto es, dan lugar a varias proteínas distintas, lo que eleva de manera explosiva el número de unidades funcionales (Ast, 2005). Como los buenos magos, de un solo gen la naturaleza saca varios.
La función de algunos genes consiste únicamente en poner en acción o bloquear otros. Para realizar transformaciones notables en el fenotipo, entonces, no se requiere inventar más genes, sino bloquear o activar, siguiendo pautas intrincadas, los que ya se tienen. Puede ocurrir que se active un gen, el que a su vez activa otro, y que este a su turno bloquee la acción de un tercero, y este el de un cuarto… A partir de los casi veinticinco mil genes humanos, estas secuencias funcionales pueden crecer con la potencia explosiva de los números combinatorios, astronómicamente, lo que resuelve el enigma de por qué en un número aparentemente tan pequeño de instrucciones genéticas se encuentre codificada tanta complejidad.
El enriquecimiento de variabilidad genética se nutre de fuentes variadas. Entre las principales están las “mutaciones”, tanto en el adn nuclear como en el de las organelas; las “combinaciones genéticas”, resultantes del proceso reproductivo en aquellas especies en las que existe cruce sexual; el “entrecruzamiento” o recombinación genética, un proceso de intercambio de genes entre cromosomas homólogos que ocurre durante la meiosis, división celular que da lugar a los gametos; y, por último, la “transferencia” de material genético entre individuos, fuente principal de diversidad en los organismos unicelulares, y cuya existencia se ha comprobado en otras especies, incluida la humana.
Las variaciones o novedades del adn aparecen al azar. Muchas veces se traducen en taras o su portador no recibe beneficios biológicos, por lo cual la novedad desaparece. En otras ocasiones mejoran las cualidades reproductivas del portador y, en consecuencia, de no ocurrir accidentes que echen a perder el descubrimiento venturoso, el acervo genético de la población se irá enriqueciendo en aquellos conjuntos genéticos que posean la mutación afortunada. Se dice entonces que la especie está evolucionando, pues en términos rigurosos, evolucionar consiste en modificar el acervo genético de la población. Es importante destacar que en el proceso descrito no hay nada seguro, determinado de antemano. Puede ocurrir que la novedad, no obstante mejorar la tasa reproductiva del individuo portador, desparezca sin dejar rastros a causa de un accidente, de una infección inoportuna o de un cambio climático notable.
Criterios de selección
El término “adaptación” es desafortunado, pues aunque sí está relacionado estrechamente con la eficacia reproductiva, factor crucial en el proceso evolutivo, no es equivalente a ella. Y es que para tener una alta eficacia reproductiva se requiere estar conformado anatómica, fisiológica y sicológicamente en concordancia con el nicho ecológico que se ocupa, es decir, se requiere estar bien adaptado al medio, pero esto es apenas el comienzo, una condición necesaria pero no suficiente: un individuo muy bien adaptado a su medio puede no tener acceso a las parejas o ser estéril, en cuyo caso su eficacia reproductiva es nula. O puede gozar de una adaptación perfecta y ser muy exitoso con las parejas, pero a la vez ser muy descuidado con la prole, lo que rebaja su eficacia reproductiva neta. En evolución existe un mandato supremo que se debe respetar (Barash, 2002): salve su pellejo o a su pariente (save your skin or your kin).
Darwin reconoció muy temprano que su modelo evolutivo no era capaz de explicar la aparición de comportamientos altruistas, factores en apariencia negativos, desadaptativos, ya que en cierta medida atentarían contra la eficacia reproductiva del mismo individuo. Para remediar tal falla, el científico William Hamilton propuso agregar al modelo original la llamada “selección por parentesco” o “adaptación inclusiva” (inclusive fitness, en inglés). La idea detrás de este factor de selección es que cualquier mutación que propicie el comportamiento altruista en beneficio de parientes, esto es, que lleve al portador a invertir recursos biológicos, ya sea en el cuidado de sus crías o en ayuda de todos aquellos que sean portadores de genomas parecidos al suyo, tendrá mayores posibilidades de propagarse en la población, gracias a que cierta fracción de los parientes directos son también portadores de la misma mutación altruista.
Una manera de evitar los equívocos a los que conduce el concepto de adaptación es definir un coeficiente de “eficacia reproductiva” que incluya los tres factores de éxito biológico fundamentales: adaptación o ajuste adecuado del organismo a su nicho ecológico presente; fertilidad efectiva y a largo plazo o capacidad de engendrar vástagos fértiles, sanos y a su vez bien adaptados; y, por último, capacidad y disposición para invertir recursos biológicos en los descendientes y en los parientes próximos, virtudes conocidas con el nombre de “altruismo familiar”.
Adviértase que la eficacia reproductiva es un concepto relativo, es decir, que debe medirse con respecto a la de los demás compañeros de especie. Para ganar la carrera evolutiva no se necesita ser muy veloz, sino serlo un poco más que los vecinos. No es necesario procrear muchos hijos, sino hacerlo un poco más que los compañeros. Pero también se puede lograr de una manera indirecta: ayudando a los parientes cercanos, portadores de genomas parecidos al del benefactor, o actuando perversamente para impedir la reproducción de los vecinos. Se aumenta así el número relativo de descendientes sin aumentar el número absoluto. Por eso no nos debe extrañar que la evolución produzca tantas veces monstruos de egoísmo y crueldad. Richard Dawkins (1996) lo resume con crudeza:
La naturaleza no es cruel, sino indiferentemente despiadada, indiferente a todo sufrimiento, carente de sentido. Lo que se maximiza eficazmente en el mundo viviente es la supervivencia del adn. La función de utilidad se convierte en el mayor bien para el mayor número. La cantidad total de sufrimiento por año en el mundo natural va mucho más allá de lo que se puede suponer. El adn no se preocupa ni sabe. El adn es, sin más. Y nosotros bailamos al son de su música.
Читать дальше