Liu et al. proposed that, in principle, there are three kinds of stability of SACs: intrinsic thermodynamic stability, kinetic stability, and dynamic stability. They suggested that the stability of SACs may depend not only on the support but also on the reaction conditions that are difficult to ascertain and vary from one system to another [70]. Strong metal–metal bonds or coordination bonds with O, N, S, or other atoms on supports may be the key for the stability of SACs. However, it is still challenging to regulate and control such metal–support interaction directly and efficiently. So far, successful examples on SACs are still limited in number [17, 18, 50, 71–73]. This situation calls for more fundamental research on detailed mechanisms.
For future research, it is desirable to develop novel, controllable, and facile synthesis methods for obtaining high‐loading SACs with excellent stability for use in practical conditions. More advanced in situ techniques and theoretical calculations should be used to understand the nature of metal–support interactions comprehensively. In addition, more examples on the high efficiencies of these SACs in various catalytic reactions should be actively sought.
1 1 Fürstner, A. (2009). Chem. Soc. Rev. 38: 3208–3221.
2 2 Heck, R.M. and Farrauto, R.J. (2001). Appl. Catal., A 221: 443–457.
3 3 Barakat, T., Rooke, J.C., Genty, E. et al. (2013). Energy Environ. Sci. 6: 371–391.
4 4 Zhu, C., Du, D., Eychmüller, A., and Lin, Y. (2015). Chem. Rev. 115: 8896–8943.
5 5 Liu, X., Iocozzia, J., Wang, Y. et al. (2017). Energy Environ. Sci. 10: 402–434.
6 6 Liang, S., Hao, C., and Shi, Y. (2015). ChemCatChem 7: 2559–2567.
7 7 Taylor, H.S. (1925). Proc. R. Soc. London, Ser. A 108: 105–111.
8 8 de Heer, W.A. (1993). Rev. Mod. Phys. 65: 611–676.
9 9 Valden, M., Lai, X., and Goodman, D.W. (1998). Science 281: 1647–1650.
10 10 Lopez‐Acevedo, O., Kacprzak, K.A., Akola, J., and Häkkinen, H. (2010). Nat. Chem. 2: 329–334.
11 11 Dahl, S., Logadottir, A., Egeberg, R.C. et al. (1999). Phys. Rev. Lett. 83: 1814–1817.
12 12 Nøskov, J.K., Bligaard, T., Hvolbæ, B. et al. (2008). Chem. Soc. Rev. 37: 2163–2171.
13 13 Schekhar, M., Wang, J., Lee, W. et al. (2012). J. Am. Chem. Soc. 134: 4700–4708.
14 14 Cargnello, M., Doan‐Nguyen, V.V.T., Gordon, T.R. et al. (2013). Science 341: 771–773.
15 15 Chen, Y., Huang, Z., Zhou, M. et al. (2016). Chem. Commun. 52: 9996–9999.
16 16 Qiao, B., Wang, A., Yang, X. et al. (2011). Nat. Chem. 3: 634–641.
17 17 Yang, X., Wang, A., Qiao, B. et al. (2013). Acc. Chem. Res. 46: 1740–1748.
18 18 Liu, J. (2017). ACS Catal. 7: 34–59.
19 19 Thomas, J.M. (1988). Angew. Chem. Int. Ed. Engl. 27: 1673–1691.
20 20 Mascheyer, T., Rey, F., Sankar, G., and Thomas, J.M. (1995). Nature 378: 159–162.
21 21 Abbet, S., Sanchez, A., Heiz, U. et al. (2000). J. Am. Chem. Soc. 122: 3453–3457.
22 22 Thomas, J.M., Raja, R., and Lewis, D.W. (2005). Angew. Chem. Int. Ed. 44: 6456–6482.
23 23 Böhme, D.K. and Schwarz, H. (2005). Angew. Chem. Int. Ed. 44: 2336–2354.
24 24 Xing, J., Chen, J., Li, Y. et al. (2014). Chem. Eur. J. 20: 2138–2144.
25 25 Yan, H., Cheng, H., Yi, H. et al. (2015). J. Am. Chem. Soc. 137: 10484–10487.
26 26 von Weber, A., Baxter, E.T., White, H.S., and Anderson, S.L. (2015). J. Phys. Chem. C 119: 11160–11170.
27 27 Zambelli, T., Wintterlin, J., Trost, J., and Ertl, G. (1996). Science 273: 1688–1690.
28 28 Campbell, C.T. (2012). Nat. Chem. 4: 597–598.
29 29 Fujitani, T. and Nakamura, I. (2011). Angew. Chem. Int. Ed. 50: 10144–10147.
30 30 Imbihl, R. and Ertl, G. (1995). Chem. Rev. 95: 697–733.
31 31 Yang, M., Allard, L.F., and Flytzani‐Stephanopoulos, M. (2013). J. Am. Chem. Soc. 135: 3768–3771.
32 32 Zhang, L., Wang, A., Wang, W. et al. (2015). ACS Catal. 5: 6563–6572.
33 33 Zhang, H., Wei, J., Dong, J. et al. (2016). Angew. Chem. Int. Ed. 55: 14310–14314.
34 34 Hu, P., Huang, Z., Amghouz, Z. et al. (2014). Angew. Chem. Int. Ed. 53: 3418–3421.
35 35 Chen, Y., Gao, J., Huang, Z. et al. (2017). Environ. Sci. Technol. 51: 7084–7090.
36 36 Wang, L., Li, H., Zhang, W. et al. (2017). Angew. Chem. Int. Ed. 56: 4712–4718.
37 37 Zhang, R., Lee, T.H., Yu, B. et al. (2012). Phys. Chem. Chem. Phys. 14: 16552–16557.
38 38 Moses‐DeBusk, M., Yoon, M., Allard, L. et al. (2013). J. Am. Chem. Soc. 135: 12634–12645.
39 39 Liang, J., Lin, J., Yang, X. et al. (2014). J. Phys. Chem. C 118: 21945–21951.
40 40 Ding, W., Gu, X., Su, H., and Li, W. (2014). J. Phys. Chem. C 118: 12216–12223.
41 41 Deng, D., Chen, X., Yu, L. et al. (2015). Sci. Adv. 1: e1500462.
42 42 Choi, C.H., Kim, M., Kwon, H.C. et al. (2016). Nat. Commun. 7: 10922.
43 43 Hackett, S.F., Brydson, R.M., Gass, M.H. et al. (2007). Angew. Chem. Int. Ed. 46: 8593–8596.
44 44 Wei, H., Liu, X., Wang, A. et al. (2014). Nat. Commun. 5: 5634.
45 45 Zhang, B., Asakura, H., Zhang, J. et al. (2016). Angew. Chem. Int. Ed. 55: 8319–8323.
46 46 Vajda, S. and White, M.G. (2015). ACS Catal. 5: 7152–7176.
47 47 Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.D. (1999). J. Am. Chem. Soc. 121: 3214–3217.
48 48 Kaden, W.E., Wu, T., Kunkel, W.A., and Anderson, S.L. (2009). Science 326: 826–829.
49 49 von Weber, A. and Anderson, S.L. (2016). Acc. Chem. Res. 49: 2632–2639.
50 50 Li, Z., Wang, D., Wu, Y., and Li, Y. (2018). Natl. Sci. Rev. 5: 673–689.
51 51 Wang, L., Zhang, S., Zhu, Y. et al. (2013). ACS Catal. 3: 1011–1019.
52 52 Gu, X., Qiao, B., Huang, C. et al. (2014). ACS Catal. 4: 3886–3890.
53 53 Guo, X., Fang, G., Li, G. et al. (2014). Science 344: 616–619.
54 54 Liu, P., Zhao, Y., Qin, R. et al. (2016). Science 352: 797–800.
55 55 Lu, J., Aydin, C., Browning, N.D., and Gates, B.C. (2012). Angew. Chem. Int. Ed. 51: 5842–5846.
56 56 Yang, M., Li, S., Wang, Y. et al. (2014). Science 346: 1498–1501.
57 57 Yang, S., Kim, J., Tak, Y.J. et al. (2016). Angew. Chem. Int. Ed. 55: 2058–2062.
58 58 Chen, Z., Zhang, Q., Chen, W. et al. (2018). Adv. Mater. 30: 1704720.
59 59 Wei, H., Huang, K., Wang, D. et al. (2017). Nat. Commun. 8: 1490.
60 60 Sun, S., Zhang, G., Gauquelin, N. et al. (2013). Sci. Rep. 3: 1775.
61 61 Xia, X., Wang, Y., Ruditskiy, A., and Xia, Y. (2013). Adv. Mater. 25: 6313–6333.
62 62 Lucci, F.R., Liu, J., Marcinkowski, M.D. et al. (2015). Nat. Commun. 6: 8550.
63 63 Marcinkowski, M.D., Darby, M.T., Liu, J. et al. (2018). Nat. Chem. 10: 325–332.
64 64 Ouyang, R., Liu, J., and Li, W. (2013). J. Am. Chem. Soc. 135: 1760–1771.
65 65 Huang, Z., Gu, X., Cao, Q. et al. (2012). Angew. Chem. Int. Ed. 51: 4198–4203.
66 66 Chen, Y., Kasama, T., Huang, Z. et al. (2015). Chem. Eur. J. 21: 17397–17402.
67 67 Chen, Y., Huang, Z., Gu, X. et al. (2017). Chin. J. Catal. 38: 1588–1596.
68 68 Jones, J., Xiong, H., DeLaRiva, A.T. et al. (2016). Science 353: 150–154.
69 69 Wei, S., Li, A., Liu, J. et al. (2018). Nat. Nanotechnol. 13: 856–861.
70 70 Liu, J., Tang, Y., Wang, Y. et al. (2018). Natl. Sci. Rev. 5: 638–641.
71 71 Chen, Y., Huang, Z., Ma, Z. et al. (2017). Catal. Sci. Technol. 7: 4250–4258.
72 72 Beniya, A. and Higashi, S. (2019). Nat. Catal. 2: 590–602.
73 73 Chen, Z.W., Chen, L.X., Yang, C.C., and Jiang, Q. (2019). J. Mater. Chem. A 7: 3492–3515.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Читать дальше