28 28 Sharma, S., Chakrahari, K.K., Saillard, J.‐Y., and Liu, C.W. (2018). Structurally precise dichalcogenolate‐protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 51 (10): 2475–2483.
29 29 Yao, Q., Chen, T., Yuan, X., and Xie, J. (2018). Toward total synthesis of thiolate‐protected metal nanoclusters. Acc. Chem. Res. 51 (6): 1338–1348.
30 30 Lei, Z., Wan, X.‐K., Yuan, S.‐F. et al. (2018). Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51 (10): 2465–2474.
31 31 Weßing, J., Ganesamoorthy, C., Kahlal, S. et al. (2018). The Mackay‐type cluster [Cu43Al12](Cp*)12: open‐shell 67‐electron superatom with emerging metal‐like electronic structure. Angew. Chem. Int. Ed. 57 (44): 14630–14634.
32 32 Braga, D., Dyson, P.J., Grepioni, F., and Johnson, B.F.G. (1994). Arene clusters. Chem. Rev. 94 (6): 1585–1620.
33 33 Huttner, G. and Knoll, K. (1987). RP‐bridged metal carbonyl clusters: synthesis, properties, and reactions. Angew. Chem. Int. Ed. Engl. 26 (8): 743–760.
34 34 Weinert, B., Mitzinger, S., and Dehnen, S. (2018). (Multi‐)metallic cluster growth. Chem. Eur. J. 24 (34): 8470–8490.
35 35 Edelmann, F.T. (2016). Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2015. Coord. Chem. Rev. 318: 29–130.
36 36 Hungria, A.B., Raja, R., Adams, R.D. et al. (2006). Single‐step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew. Chem. Int. Ed. 45 (29): 4782–4785.
37 37 Wu, Z., Lanni, E., Chen, W. et al. (2009). High yield, large scale synthesis of thiolate‐protected Ag7 clusters. J. Am. Chem. Soc. 131 (46): 16672–16674.
38 38 Yang, H., Wang, Y., Huang, H. et al. (2013). All‐thiol‐stabilized Ag44 and Au12Ag32 nanoparticles with single‐crystal structures. Nat. Commun. 4: 2422.
39 39 Anderson, D.P., Alvino, J.F., Gentleman, A. et al. (2013). Chemically‐synthesised, atomically‐precise gold clusters deposited and activated on titania. Phys. Chem. Chem. Phys. 15 (11): 3917–3929.
40 40 Niihori, Y., Shima, D., Yoshida, K. et al. (2018). High‐performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates. Nanoscale 10 (4): 1641–1649.
41 41 Lewis, L.N. (1993). Chemical catalysis by colloids and clusters. Chem. Rev. 93 (8): 2693–2730.
42 42 Jadzinsky, P.D., Calero, G., Ackerson, C.J. et al. (2007). Structure of a thiol monolayer‐protected gold nanoparticle at 1.1 Å resolution. Science 318 (5849): 430–433.
43 43 Aiken, J.D. and Finke, R.G. (1999). A review of modern transition‐metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145 (1): 1–44.
44 44 Schmid, G., Pfeil, R., Boese, R. et al. (1981). Au55{P(C6H5)3}12Cl6 – a gold cluster of an exceptional size. Chem. Ber. Recl. 114 (11): 3634–3642.
45 45 Weare, W.W., Reed, S.M., Warner, M.G., and Hutchison, J.E. (2000). Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine‐stabilized gold nanoparticles. J. Am. Chem. Soc. 122 (51): 12890–12891.
46 46 Rapoport, D.H., Vogel, W., Cölfen, H., and Schlögl, R. (1997). Ligand‐stabilized metal clusters: reinvestigation of the structure of “Au55[P(C6H5)3]12Cl6”. J. Phys. Chem. B 101 (21): 4175–4183.
47 47 Garden, A.L., Pedersen, A., and Jónsson, H. (2018). Reassignment of ‘magic numbers’ for Au clusters of decahedral and FCC structural motifs. Nanoscale 10 (11): 5124–5132.
48 48 Walter, M., Akola, J., Lopez‐Acevedo, O. et al. (2008). A unified view of ligand‐protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105 (27): 9157–9162.
49 49 Butcher, C.P.G., Dinca, A., Dyson, P.J. et al. (2003). A strategy for generating naked‐metal clusters for gas‐phase reactivity studies by FTICR–MS. Angew. Chem. Int. Ed. 42 (46): 5752–5755.
50 50 Henderson, M.A., Kwok, S., and McIndoe, J.S. (2009). Gas‐phase reactivity of ruthenium carbonyl cluster anions. J. Am. Soc. Mass. Spectrom. 20 (4): 658–666.
51 51 Pignolet, L.H., Aubart, M.A., Craighead, K.L. et al. (1995). Phosphine‐stabilized, platinum–gold and palladium–gold cluster compounds and applications in catalysis. Coord. Chem. Rev. 143: 219–263.
52 52 Castiglioni, M., Deabate, S., Giordano, R. et al. (1998). Homogeneous hydrogenation of alkynes and of 1,4‐cyclohexadiene in the presence of the clusters Ru3(CO)7(μ‐PPh2)2(C6H4), Ru4(CO)11(μ4‐PPh)(C6H4), Ru3(CO)7(μ‐PPh2)2(HC2Ph) and Ru4(CO)11(μ4‐PPh)(C2Ph2). J. Organomet. Chem. 571 (2): 251–260.
53 53 Adams, R.D. (2000). Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. J. Organomet. Chem. 600 (1): 1–6.
54 54 Zhu, Y., Qian, H., Drake, B.A., and Jin, R. (2010). Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α,β‐unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. 49 (7): 1295–1298.
55 55 Abdel‐Magied, A.F., Patil, M.S., Singh, A.K. et al. (2015). Synthesis, characterization and catalytic activity studies of rhenium carbonyl complexes containing chiral diphosphines of the Josiphos and Walphos families. J. Cluster Sci. 26 (4): 1231–1252.
56 56 Pelayo, J.J., Valencia, I., Garcia, A.P. et al. (2018). Chirality in bare and ligand‐protected metal nanoclusters. Adv. Phys. 3 (1): 1509727.
57 57 Oliver‐Meseguer, J., Cabrero‐Antonino, J.R., Domínguez, I. et al. (2012). Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338 (6113): 1452–1455.
58 58 Zhang, Q.‐F., Chen, X., and Wang, L.‐S. (2018). Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res. 51 (9): 2159–2168.
59 59 Chisholm, D.M. and Scott McIndoe, J. (2008). Charged ligands for catalyst immobilisation and analysis. Dalton Trans. 30: 3933–3945.
60 60 Thomas, J.M., Johnson, B.F.G., Raja, R. et al. (2003). High‐performance nanocatalysts for single‐step hydrogenations. Acc. Chem. Res. 36 (1): 20–30.
61 61 Ichikawa, M. (1992). Metal cluster compounds as molecular precursors for tailored metal catalysts. In: Advances in Catalysis, vol. 38 (eds. D.D. Eley, H. Pines and P.B. Weisz), 283–400. Academic Press.
62 62 Gates, B.C. (1995). Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95 (3): 511–522.
63 63 Kulkarni, A., Lobo‐Lapidus, R.J., and Gates, B.C. (2010). Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46 (33): 5997–6015.
64 64 Shephard, D.S., Maschmeyer, T., Johnson, B.F.G. et al. (1997). Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed. Engl. 36 (20): 2242–2245.
65 65 Shephard, D.S., Maschmeyer, T., Sankar, G. et al. (1998). Preparation, characterisation and performance of encapsulated copper–ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors. Chem. Eur. J. 4 (7): 1214–1224.
66 66 Zhou, W., Thomas, J.M., Shephard, D.S. et al. (1998). Ordering of ruthenium cluster carbonyls in mesoporous silica. Science 280 (5364): 705–708.
67 67 Turner, M., Golovko, V.B., Vaughan, O.P.H. et al. (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55‐atom clusters. Nature 454 (7207): 981–984.
68 68 Menard, L.D., Xu, F., Nuzzo, R.G., and Yang, J.C. (2006). Preparation of TiO2‐supported Au nanoparticle catalysts from a Au13 cluster precursor: ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal. 243 (1): 64–73.
Читать дальше