Heterogeneous Catalysts

Здесь есть возможность читать онлайн «Heterogeneous Catalysts» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Heterogeneous Catalysts: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Heterogeneous Catalysts»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Presents s
tate-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields
This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. 
Heterogeneous Catalysts: Advanced Design, Characterization and Applications
 
Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment 
 is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Heterogeneous Catalysts — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Heterogeneous Catalysts», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

14 14 Zhao, X., Jin, W., Cai, J. et al. (2011). Adv. Funct. Mater. 21: 3554–3563.

15 15 Mallikarjuna, N.N. and Varma, R.S. (2007). Cryst. Growth Des. 7: 686–690.

16 16 Praneeth, N.V.S. and Paria, S. (2018). CrystEngComm 20: 4297–4304.

17 17 Yu, Y.Y., Chang, S.S., Lee, C.L., and Wang, C.R.C. (1997). J. Phys. Chem. B 101: 6661–6664.

18 18 Kim, F., Song, J.H., and Yang, P.D. (2002). J. Am. Chem. Soc. 124: 14316–14317.

19 19 Placido, T., Comparelli, R., Giannici, F. et al. (2009). Chem. Mater. 21: 4192–4202.

20 20 Lovette, M.A., Browning, A.R., Griffin, D.W. et al. (2008). Ind. Eng. Chem. Res. 47: 9812–9833.

21 21 Gong, X.‐Q. and Selloni, A. (2007). Phys. Rev. B 76: 235307‐1–235307‐11.

22 22 Lazzeri, M., Vittadini, A., and Selloni, A. (2002). Phys. Rev. B 65: 155409.

23 23 Liu, G., Yu, J.C., Lu, G.Q., and Cheng, H.M. (2011). Chem. Commun. 47: 6763–6783.

24 24 Harris, P.J.F. (1986). Nature 323: 792–794.

25 25 Cha, S.I., Mo, C.B., Kim, K.T. et al. (2006). J. Mater. Res. 21: 2371–2378.

26 26 Sun, Y.G. and Xia, Y.N. (2002). Science 298: 2176–2179.

27 27 Xiong, Y.J., Cai, H.G., Yin, Y.D., and Xia, Y.N. (2007). Chem. Phys. Lett. 440: 273–278.

28 28 Yang, H.G., Sun, C.H., Qiao, S.Z. et al. (2008). Nature 453: 638–641.

29 29 Huang, W.C., Lyu, L.M., Yang, Y.C., and Huang, M.H. (2012). J. Am. Chem. Soc. 134: 1261–1267.

30 30 Zhang, D.F., Zhang, H., Guo, L. et al. (2009). J. Mater. Chem. 19: 5220–5225.

31 31 Sui, Y.M., Fu, W.Y., Zeng, Y. et al. (2010). Angew. Chem. Int. Ed. 49: 4282–4285.

32 32 Liu, L., Qian, J.S., Li, B. et al. (2010). Chem. Commun. 46: 2402–2404.

33 33 Schlogl, R. (2015). Angew. Chem. 54: 3465–3520.

34 34 Tian, N., Zhou, Z.Y., Sun, S.G. et al. (2007). Science 316: 732–735.

35 35 Sun, C.H., Liu, L.M., Selloni, A. et al. (2010). J. Mater. Chem. 20: 10319–10334.

36 36 Vittadini, A., Selloni, A., Rotzinger, F.P., and Gratzel, M. (1998). Phys. Rev. Lett. 81: 2954–2957.

37 37 Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U. (2003). J. Phys. Chem. B 107: 2788–2795.

38 38 Diebold, U. (2003). Surf. Sci. Rep. 48: 53–229.

39 39 Onda, K., Li, B., Zhao, J. et al. (2005). Science 308: 1154–1158.

40 40 He, Y., Tilocca, A., Dulub, O. et al. (2009). Nat. Mater. 8: 585–589.

41 41 Selloni, A., Vittadini, A., and Gratzel, M. (1998). Surf. Sci. 402: 219–222.

42 42 Kittel, C. (2004). Introduction to Solid State Physicis, 8e. Wiley.

43 43 Yamamoto, Y. and Miyokawa, T. (1998). J. Vac. Sci. Technol., B 16: 2871–2875.

44 44 Kaminsky, M. (1965). Atomic and Ionic Impact Phenomena on Metal Surfaces. Academic Press.

45 45 Dweydari, A.W. and Mee, C.H.B. (1975). Phys. Status Solidi A 27: 223–230.

46 46 Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J. (2000). Phys. Rev. B 61: 7459–7465.

47 47 Liu, G., Sun, C.H., Yang, H.G. et al. (2010). Chem. Commun. 46: 755–757.

48 48 Bi, Y., Ouyang, S., Umezawa, N. et al. (2011). J. Am. Chem. Soc. 133: 6490–6492.

49 49 Wang, X., Yin, L., Liu, G. et al. (2011). Energy Environ. Sci. 4: 3976–3979.

50 50 Xie, Y.P., Liu, G., Yin, L., and Cheng, H.‐M. (2012). J. Mater. Chem. 22: 6746–6751.

51 51 Wiley, B.J., Im, S.H., Li, Z.Y. et al. (2006). J. Phys. Chem. B 110: 15666–15675.

52 52 Zhu, J., Fan, F.T., Chen, R.T. et al. (2015). Angew. Chem. Int. Ed. 54: 9111–9114.

53 53 Zhu, J., Pang, S., Dittrich, T. et al. (2017). Nano Lett. 17: 6735–6741.

54 54 Huh, J.H., Lee, J., and Lee, S. (2018). ACS Photonics 5: 413–421.

55 55 Tao, A., Sinsermsuksakul, P., and Yang, P.D. (2006). Angew. Chem. Int. Ed. 45: 4597–4601.

56 56 Zhang, Y.N., Qin, N., Li, J.Y. et al. (2017). Appl. Catal., B 216: 30–40.

57 57 Tao, J.G., Luttrell, T., and Batzill, M. (2011). Nat. Chem. 3: 296–300.

58 58 Wang, L., Nguyen, N.T., Shen, Z.Q. et al. (2018). Nano Energy 50: 331–338.

59 59 Huang, M.H., Rej, S., and Chiu, C.Y. (2015). Small 11: 2716–2726.

60 60 Rej, S., Wang, H.J., Huang, M.X. et al. (2015). Nanoscale 7: 11135–11141.

61 61 Yang, K.H., Hsu, S.C., and Huang, M.H. (2016). Chem. Mater. 28: 5140–5146.

62 62 Somorjai, G.A. (1994). Introduction to Surface Chemistry and Catalysis. Wiley.

63 63 Hoshi, N., Kawatani, S., Kudo, M., and Hori, Y. (1999). J. Electroanal. Chem. 467: 67–73.

64 64 Banholzer, W.F. and Masel, R.I. (1984). J. Catal. 85: 127–134.

3 Electrochemical Synthesis of Nanostructured Catalytic Thin Films

Hoi Ying Chung and Yun Hau Ng

City University of Hong Kong, School of Energy and Environment, Kowloon, Hong Kong, Special Administrative Region (S.A.R.)

3.1 Introduction

Catalytically active materials in the physical form of thin film (in the range of nanometer to micrometer) have found wide applications in reactions involving thermal catalysis, electrocatalysis, and photocatalysis [1]. Although depending on the targeted applications, usage of catalytic thin films offers a few advantages from the operational viewpoint over the powder or homogeneous catalyst counterpart. For instance, the elimination of catalyst separation process upon completion of reactions is helpful in simplifying processes. Improved robustness against sintering at elevated operating temperature is another crucial benefits offered by thin films to prolong the stability of catalyst because the heat‐induced sintering always results in the loss of activity. Furthermore, catalytic reactions involving electrical circuit such as electrochemical hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and other electrocatalytic reactions must at least require the active materials to be immobilized on the electrodes. Thin film is one of the most common forms of active electrodes – see, for example, their detailed applications in electrochemical water splitting, polymer electrolyte membrane fuel cells, and photo/electrochemical CO 2reduction in Chapters 30, 32, and 36, respectively.

These catalytic thin films are prepared either by direct growth of catalytic materials on thin substrates (e.g. glass or metal sheets) or they can be pre‐synthesized as powder materials followed by an immobilization process on the thin films [2, 3]. Traditionally, flat thin films can be prepared using thermal/chemical/physical/vapor deposition, sputtering, spin/ dip/doctor‐blade coating, electroplating, etc. [4–10] Principles used in guiding the formation of thin films are vastly different. For example, in vapor deposition methods, usually low pressures and high temperatures are needed for generating the vapor of precursors. In particle coating techniques, particle size, binder, and viscosity modifier play important roles in ensuring good adhesion with the substrates. Control over the uniformity of thickness, composition of materials, and strength of adhesion are the typical aspects considered in the flat thin film synthesis. Evolved from these flat thin films, catalytic thin films with nanostructure (whether with or without ordered nanostructure; with or without regular pattern) are emerging as a new class of functional materials. Nanostructures of catalytic components on thin films can be generally grouped into 1D (e.g. nanotubes, nanorods), 2D (e.g. nanosheets), and 3D (hierarchical nanostructures, e.g. tetrapods, nanoflowers, sea urchin‐like structures) configurations, with unique properties found in each nanostructure. Modulation of these anisotropic nanostructures, where the shapes of the nanostructures are formed as a result of preferential growth (or leaching) in certain directions, on thin films is another domain that needs to be addressed with precise control. As the conventional flat thin films are typically made of bulk materials (metal, metal oxides, metal‐based semiconductors, polymeric structures, etc.), the introduction of nanostructures offers additional properties (e.g. physical, electronic, and optical) [11–13] to the thin film, in which new applications are found.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Heterogeneous Catalysts»

Представляем Вашему вниманию похожие книги на «Heterogeneous Catalysts» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Heterogeneous Catalysts»

Обсуждение, отзывы о книге «Heterogeneous Catalysts» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x