3D Printing for Energy Applications

Здесь есть возможность читать онлайн «3D Printing for Energy Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

3D Printing for Energy Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «3D Printing for Energy Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices.
Readers will also benefit from the inclusion of 
A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric AM Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists,
will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.

3D Printing for Energy Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «3D Printing for Energy Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

53 53 Stavropoulos, P., Foteinopoulos, P., Papacharalampopoulos, A., & Bikas, H. (2018). Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. International Journal of Lightweight Materials and Manufacture, 1(3), 157–168. doi:10.1016/j.ijlmm.2018.07.002

54 54 Lundin, C. D. (1982). Dissimilar metal welds: Transition joints literature review. Welding Journal (Miami, Fla), 61(2), 58‐s–63‐s.

55 55 Chen, N., Khan, H. A., Wan, Z., Lippert, J., Sun, H., Shang, S.‐L., . . . Li, J. (2020). Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. Additive Manufacturing, 32, 101037‐1–101037‐16. doi:10.1016/j.addma.2020.101037

56 56 Anderson, R., Terrell, J., Schneider, J., Thompson, S., & Gradl, P. (2019). Characteristics of bi‐metallic interfaces formed during direct energy deposition additive manufacturing processing. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 50(4), 1921–1930. doi:10.1007/s11663‐019‐01612‐1

57 57 Li, P., Gong, Y., Xu, Y., Qi, Y., Sun, Y., & Zhang, H. (2019). Inconel‐steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties. Archives of Civil and Mechanical Engineering, 19(3), 820–831. doi:10.1016/j.acme.2019.03.002

58 58 Shang, C., Wang, C., Xu, G., Li, C., & You, J. (2019). Laser additive manufacturing of TA15: Inconel 718 bimetallic structure via Nb/Cu multi‐interlayer. Vacuum, 169(July), 108888. doi:10.1016/j.vacuum.2019.108888

59 59 Savitha, U., Srinivas, V., Jagan Reddy, G., Gokhale, A. A., & Sundararaman, M. (2018). Additive laser deposition of YSZ on Ni base superalloy for thermal barrier application. Surface and Coatings Technology, 354, 257–267. doi:10.1016/j.surfcoat.2018.08.089

60 60 Zuback, J. S., Palmer, T. A., & DebRoy, T. (2019). Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys. Journal of Alloys and Compounds, 770, 995–1003. doi:10.1016/j.jallcom.2018.08.197

61 61 Lu, Y., Huang, Y., & Wu, J. (2018). Laser additive manufacturing of structural‐graded bulk metallic glass. Journal of Alloys and Compounds, 766, 506–510. doi:10.1016/j.jallcom.2018.06.259

62 62 Liu, Y., Liang, C., Liu, W., Ma, Y., Liu, C., & Zhang, C. (2018). Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure. Journal of Alloys and Compounds, 763, 376–383. doi:10.1016/j.jallcom.2018.05.289

63 63 Bobbio, L. D., Otis, R. A., Borgonia, J. P., Dillon, R. P., Shapiro, A. A., Liu, Z.‐K., & Beese, A. M. (2017). Additive manufacturing of a functionally graded material from Ti‐6Al‐4V to Invar: Experimental characterization and thermodynamic calculations. Acta Materialia, 127, 133–142. doi:10.1016/j.actamat.2016.12.070

64 64 Nartu, M. S. K. K. Y., Mantri, S. A., Pantawane, M. V., Ho, Y.‐H., McWilliams, B., Cho, K., . . . Banerjee, R. (2020). In situ reactions during direct laser deposition of Ti‐B4C composites. Scripta Materialia, 183, 28–32. doi:10.1016/j.scriptamat.2020.03.021

65 65 Traxel, K. D., & Bandyopadhyay, A. (2020). Naturally architected microstructures in structural materials via additive manufacturing. Additive Manufacturing, 34, 101243‐1–101243‐14. doi:10.1016/j.addma.2020.101243

66 66 Lanfant, B., Bär, F., Mohanta, A., & Leparoux, M. (2019). Fabrication of metal matrix composite by laser metal deposition‐a new process approach by direct dry injection of nanopowders. Materials, 12(21), 3584‐1–3584‐16. doi:10.3390/ma12213584

67 67 Hu, Y., Cong, W., Wang, X., Li, Y., Ning, F., & Wang, H. (2018). Laser deposition‐additive manufacturing of TiB‐Ti composites with novel three‐dimensional quasi‐continuous network microstructure: Effects on strengthening and toughening. Composites Part B: Engineering, 133, 91–100. doi:10.1016/j.compositesb.2017.09.019

68 68 Li, F., Gao, Z., Li, L., & Chen, Y. (2016). Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Optics and Laser Technology, 77, 134–143. doi:10.1016/j.optlastec.2015.09.018

69 69 Hofmann, D. C., Roberts, S., Otis, R., Kolodziejska, J., Dillon, R. P., Suh, J.‐O., . . . Borgonia, J.‐P. (2014). Developing gradient metal alloys through radial deposition additive manufacturing. Scientific Reports, 4, 5357‐1–5357‐8. doi:10.1038/srep05357

70 70 Heer, B., & Bandyopadhyay, A. (2018). Compositionally graded magnetic‐nonmagnetic bimetallic structure using laser engineered net shaping. Materials Letters, 216, 16–19. doi:10.1016/j.matlet.2017.12.129

71 71 Akinlabi, E. T., & Akinlabi, S. A. (2014). Friction stir welding of dissimilar metals. In M.‐K. Besharati‐Givi & P. Asadi (Eds.), Advances in Friction‐Stir Welding and Processing. Cambridge: Woodhead Publishing. doi:10.1533/9780857094551.241

72 72 Domack, M. S., & Baughman, J. M. (2005). Development of nickel‐titanium graded composition components. Rapid Prototyping Journal, 11(1), 41–51. doi:10.1108/13552540510573383

73 73 Dilip, J. J. S., & Ram, G. D. J. (2013). Microstructure evolution in aluminum alloy AA 2014 during multi‐layer friction deposition. Materials Characterization, 86, 146–151.

74 74 Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.

75 75 Yin, S., Yan, X., Chen, C., Jenkins, R., Liu, M., & Lupoi, R. (2018). Hybrid additive manufacturing of Al‐Ti6Al4V functionally graded materials with selective laser melting and cold spraying. Journal of Materials Processing Technology, 255, 650–655. doi:10.1016/j.jmatprotec.2018.01.015

76 76 Nadimpalli, V. K., & Nagy, P. B. (2018). Designing an in‐situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing. AIP Conference Proceedings, 1949, 020005‐1–020005‐9. doi:10.1063/1.5031502

77 77 Nadimpalli, V. K., Yang, L., & Nagy, P. B. (2018). In‐situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT and E International, 93, 117–130. doi:10.1016/j.ndteint.2017.10.004

78 78 Sridharan, N., Wolcott, P., Dapino, M., & Babu, S. S. S. S. (2017). Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 22(5), 373–380. doi:10.1080/13621718.2016.1249644

79 79 Wolcott, P. J. J., Sridharan, N., Babu, S. S. S., Miriyev, A., Frage, N., & Dapino, M. J. J. (2016). Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 21(2), 114–123. doi:10.1179/1362171815Y.0000000072

80 80 Stucker, B. E., Obielodan, J. O., Ceylan, A., & Murr, L. E. (2010). Multi‐material bonding in ultrasonic consolidation. Rapid Prototyping Journal, 16(3), 180–188. doi:10.1108/13552541011034843

81 81 Kumar, S., & Kruth, J.‐P. (2010). Composites by rapid prototyping technology. Materials and Design, 31(2), 850–856. doi:10.1016/j.matdes.2009.07.045

82 82 Guo, H., Gingerich, M. B., Headings, L. M., Hahnlen, R., & Dapino, M. J. (2019). Joining of carbon fiber and aluminum using ultrasonic additive manufacturing (UAM). Composite Structures, 208, 180–188. doi:10.1016/j.compstruct.2018.10.004

83 83 Yang, Y., Janaki Ram, G. D. D., & Stucker, B. E. E. (2009). Bond formation and fiber embedment during ultrasonic consolidation. Journal of Materials Processing Technology, 209(10), 4915–4924. doi:10.1016/j.jmatprotec.2009.01.014

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «3D Printing for Energy Applications»

Представляем Вашему вниманию похожие книги на «3D Printing for Energy Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «3D Printing for Energy Applications»

Обсуждение, отзывы о книге «3D Printing for Energy Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x