3D Printing for Energy Applications

Здесь есть возможность читать онлайн «3D Printing for Energy Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

3D Printing for Energy Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «3D Printing for Energy Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices.
Readers will also benefit from the inclusion of 
A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric AM Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists,
will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.

3D Printing for Energy Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «3D Printing for Energy Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

23 23 Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. doi:10.1179/1743280411Y.0000000014

24 24 Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30. doi:10.1098/rsta.2005.1678

25 25 Simone, A. E., & Gibson, L. J. (1998). The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Materialia, 46(11), 3929–3935. doi:10.1016/S1359‐6454(98)00072‐X

26 26 Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., & Hague, R. J. M. (2016). A mechanical property evaluation of graded density Al‐Si10‐Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 670, 264–274. doi:10.1016/j.msea.2016.06.013

27 27 Choy, S. Y. S. Y., Sun, C. N. C.‐N., Leong, K. F. K. F., & Wei, J. (2017). Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials and Design, 131(June), 112–120. doi:10.1016/j.matdes.2017.06.006

28 28 Li, S., Hassanin, H., Attallah, M. M., Adkins, N. J. E., & Essa, K. (2016). The development of TiNi‐based negative Poisson's ratio structure using selective laser melting. Acta Materialia, 105, 75–83. doi:10.1016/j.actamat.2015.12.017

29 29 Tan, C., Li, S., Essa, K., Jamshidi, P., Zhou, K., Ma, W., & Attallah, M. M. M. M. (2019). Laser powder bed fusion of Ti‐rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture, 141(January), 19–29. doi:10.1016/j.ijmachtools.2019.04.002

30 30 Carluccio, D., Demir, A. G., Bermingham, M. J., & Dargusch, M. S. (2020). Challenges and opportunities in the selective laser melting of biodegradable metals for load‐bearing bone scaffold applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51, 3311–3334. doi:10.1007/s11661‐020‐05796‐z

31 31 Hazlehurst, K. B., Wang, C. J., & Stanford, M. (2014). An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Materials and Design, 60, 177–183. doi:10.1016/j.matdes.2014.03.068

32 32 Ataee, A., Li, Y., Fraser, D., Song, G., & Wen, C. (2018). Anisotropic Ti‐6Al‐4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 137, 345–354. doi:10.1016/j.matdes.2017.10.040

33 33 Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti‐6Al‐4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61–73. doi:10.1016/j.jmbbm.2015.06.024

34 34 Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials and Design, 182, 108021. doi:10.1016/j.matdes.2019.108021

35 35 Zhang, X.‐Y., Fang, G., Leeflang, S., Zadpoor, A. A., & Zhou, J. (2019). Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, 84, 437–452. doi:10.1016/j.actbio.2018.12.013

36 36 Nadimpalli, V. K., Dahmen, T., Valente, E. H., Mohanty, S., & Pedersen, D. B. (2019, June 3–7). Multi‐material additive manufacturing of steels using laser powder bed fusion. Proceedings of the 19th International Conference and Exhibition European Society for Precision Engineering and Nanotechnology, Conference, EUSPEN 2019, Bilbao.

37 37 Chen, J., Yang, Y., Song, C., Zhang, M., Wu, S., & Wang, D. (2019). Interfacial microstructure and mechanical properties of 316L /CuSn10 multi‐material bimetallic structure fabricated by selective laser melting. Materials Science and Engineering A, 752, 75–85. doi:10.1016/j.msea.2019.02.097

38 38 Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L. E., & Wicker, R. B. (2016). Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. doi:10.1016/j.matdes.2016.01.041

39 39 AlMangour, B., Grzesiak, D., & Yang, J. M. (2017). In‐situ formation of novel TiC‐particle‐reinforced 316L stainless steel bulk‐form composites by selective laser melting. Journal of Alloys and Compounds, 706, 409–418. doi:10.1016/j.jallcom.2017.01.149

40 40 Han, C., Li, Y., Wang, Q., Cai, D., Wei, Q., Yang, L., . . . Shi, Y. (2018). Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi‐continuous ratios fabricated by SLM: Material interface and fracture toughness. Materials and Design, 141, 256–266. doi:10.1016/j.matdes.2017.12.037

41 41 Kun, C., Beibei, H. H., Wenheng, W., & Cailin, Z. (2017). The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite. Vacuum, 143, 23–27. doi:10.1016/j.vacuum.2017.05.029

42 42 Xia, M., Liu, A., Hou, Z., Li, N., Chen, Z., & Ding, H. (2017). Microstructure growth behavior and its evolution mechanism during laser additive manufacture of in‐situ reinforced (TiB+TiC)/Ti composite. Journal of Alloys and Compounds, 728, 436–444. doi:10.1016/j.jallcom.2017.09.033

43 43 Niendorf, T., Leuders, S., Riemer, A., Brenne, F., Tröster, T., Richard, H. A., & Schwarze, D. (2014). Functionally graded alloys obtained by additive manufacturing. Advanced Engineering Materials, 16(7), 857–861. doi:10.1002/adem.201300579

44 44 Koptyug, A., Popov, V. V., Botero Vega, C. A., Jiménez‐Piqué, E., Katz‐Demyanetz, A., Rännar, L. E., & Bäckström, M. (2020). Compositionally‐tailored steel‐based materials manufactured by electron beam melting using blended pre‐alloyed powders. Materials Science and Engineering A, 771(July 2019), 138587‐1–138587‐11. doi:10.1016/j.msea.2019.138587

45 45 Biondani, F. G., Bissacco, G., Mohanty, S., Tang, P. T., & Hansen, H. N. (2020). Multi‐metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.

46 46 Anstaett, C., Seidel, C., & Reinhart, G. (2017). Fabrication of 3D multi‐material parts using laser‐based powder bed fusion. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium.

47 47 Aerosint. (n.d.). Selective powder deposition for AM. Retrieved from https://aerosint.com/

48 48 Demir, A. G., & Previtali, B. (2017). Multi‐material selective laser melting of Fe/Al‐12Si components. Manufacturing Letters, 11, 8–11.

49 49 Wei, C., Li, L., Zhang, X., & Chueh, Y.‐H. (2018). 3D printing of multiple metallic materials via modified selective laser melting. CIRP Annals, 67(1), 245–248.

50 50 Bodner, S. C., van de Vorst, L. T. G., Zalesak, J., Todt, J., Keckes, J. F., Maier‐Kiener, V., . . . Keckes, J. (2020). Inconel‐steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, 32, 101027‐1–101027‐11. doi:10.1016/j.addma.2019.101027

51 51 Wang, J., Pan, Z., Ma, Y., Lu, Y., Shen, C., Cuiuri, D., & Li, H. (2018). Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science and Engineering A, 734, 110–119. doi:10.1016/j.msea.2018.07.097

52 52 FORCE Technology. (n.d.). Large‐scale 3D printing facility. Retrieved from https://forcetechnology.com/en/all‐industry‐facilities/large‐scale‐3d‐printing‐facility

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «3D Printing for Energy Applications»

Представляем Вашему вниманию похожие книги на «3D Printing for Energy Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «3D Printing for Energy Applications»

Обсуждение, отзывы о книге «3D Printing for Energy Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x