Microgrid Technologies

Здесь есть возможность читать онлайн «Microgrid Technologies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Microgrid Technologies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Microgrid Technologies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems.
Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. 
The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices.
The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. 
Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.

Microgrid Technologies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Microgrid Technologies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

27. Lidula, N.W.A., Rajapakse, A.D., Microgrids research: A review of experimental microgrids and test systems, Renew. Sustain. Energy Rev. , 15, 186–202, 2011.

28. Garcia-Gonzalez, J., Muela, R.M.R., dl Santos, L.M., Gonzalez, A.M., Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market, IEEE Trans. Power Syst. , 23, 460–468, 2008.

29. Chen, C., Duan, S., Optimal allocation of distributed generation and energy storage system in microgrids, IET Renew. Power Gener. , 8, 581–589, 2014.

30. Ramin, D., Spinelli, S., Brusaferri, A., Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process, Appl. Energy , 225, 622–636, 2018.

31. Behrangrad, M., A review of demand side management business models in the electricity market, Renew. Sustain. Energy Rev. , 47, 270–283, 2015.

32. Shayeghi, H., Sobhani, B., Integrated offering strategy for profit enhancement of distributed resources and demand response in microgrids considering system uncertainties, Energy Convers. Manag. , 87, 765–777, 2014.

33. Zhao, B., Xue, M., Zhang, X., Wang, C., Zhao, J., An MAS based energy management system for a standalone microgrid at high altitude, Appl. Energy , 143, 251–261, 2015.

34. Alavi, S.A., Ahmadian, A., Aliakbar-Golkar, M., Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method, Energy Convers. Manag. , 95, 314–325, 2015.

35. Soroudi, A., Amraee, T., Decision making under uncertainty in energy systems: State of the art, Renew. Sustain. Energy Rev. , 28, 376–384, 2013.

36. Tascikaraoglu, A., Uzunoglu, M., A review of combined approaches for prediction of short-term wind speed and power, Renew. Sustain. Energy Rev. , 34, 243–254, 2014.

37. Teo, K.K., Wang, L., Lin, Z., Wavelet Packet Multi-layer Perceptron for Chaotic Time Series Prediction: Effects of Weight Initialization, In Proceedings of the Computational Science—ICCS 2001: International Conference , San Francisco, CA, USA, 1, pp. 310–317, 28–30 May 200.

38. Al-Fattah, S.M., Artificial Neural Network Models for Forecasting Global Oil Market Volatility, SSRN Electron. J. , 112, 2013.

39. Amjady, N., Day-ahead price forecasting of electricity markets by a new fuzzy neural network, IEEE Trans. Power Syst. , 21, 887–896, 2006.

40. Fu, Q., Nasiri, A., Bhavaraju, V., Solanki, A., Abdallah, T., Yu, D.C., Transition Management of Microgrids With High Penetration of Renewable Energy, IEEE Trans. Smart Grid , 5, 539–549, 2014.

41. Liu, Y., Yu, S., Zhu, Y., Wang, D., Liu, J., Modeling, planning, application and management of energy systems for isolated areas: A review, Renew. Sustain. Energy Rev. , 82, 460–470, 2018.

42. Upadhyay, S., & Sharma, M.P., Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India, Energy , 94, 352–366, 2016.

43. Han, Y., Chen, W., & Li, Q., Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid, Energies , 10(1), 136, 2017.

44. Marzband, M., Yousefnejad, E., Sumper, A., & Domínguez-García, J.L., Real time experimental implementation of optimum energy management system in standalone microgrid by using multi-layer ant colony optimization, International Journal of Electrical Power & Energy Systems , 75, 265–274, 2016.

45. Adarsh, B.R., Raghunathan, T., Jayabarathi, T., & Yang, X.S., Economic dispatch using chaotic bat algorithm, Energy , 96, 666–675, 2016.

46. Marzband, M., Alavi, H., Ghazimirsaeid, S.S., Uppal, H., & Fernando, T., Optimal energy management system based on stochastic approach for a home Microgrid with integrated, responsive load demand and energy storage, Sustainable Cities and Society , 28, 256–264, 2017.

47. Maleki, A., Hafeznia, H., Rosen, M.A., & Pourfayaz, F., Optimization of a grid-connected hybrid solar wind-hydrogen CHP system for residential applications by efficient metaheuristic approaches, Applied Thermal Engineering , 123, 1263–1277, 2017.

48. Hussain, A., Lee, J.H., & Kim, H.M., An optimal energy management strategy for thermally networked microgrids in grid-connected mode, Int. J. Smart Home , 10, 239–258, 2016.

49. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S.R., Adnan, M., Ali, S.F., Khokhar, K.S., Techno-economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar, Energy , 2018.

50. Blum, C., & Roli, A., Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Computing Surveys (CSUR) , 35(3), 268–308, 2003.

51. Das, B.K., Al-Abdeli, Y.M., Kothapalli, G., Effect of load following strategies, hardware, and thermal load distribution on standalone hybrid CCHP systems, Appl. Energy , 2018.

52. Luu, N.A., Tran, Q.T., Bacha, S., Optimal energy management for an island microgrid by using dynamic programming method, In Proceedings of the 2015 IEEE Eindhoven PowerTech , Eindhoven, The Netherlands, 29 June–2 July 2015.

53. Neves, D., Pina, A., Silva, C.A., Comparison of different demand response optimization goals on an isolated microgrid, Sustain. Energy Technol. Assess. , 2018.

54. Yu, J., Dou, C., & Li, X., MAS-based energy management strategies for a hybrid energy generation system, IEEE Transactions on Industrial Electronics , 63(6), 3756–3764, 2016.

55. Ju, C., Wang, P., Goel, L., Xu, Y., A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs, IEEE Trans. Smart Grid , 2018.

56. Wang, Z., Zhu, Q., Huang, M., & Yang, B., Optimization of economic/environmental operation management for microgrids by using hybrid fireworks algorithm, International Transactions on Electrical Energy Systems , 27(12), 2017.

57. Roy, K., Mandal, K.K., & Mandal, A.C., Modeling and managing of micro grid connected system using improved artificial bee colony algorithm, International Journal of Electrical Power & Energy Systems , 75, 50–58, 2016.

58. Lin, W.M., Tu, C.S., & Tsai, M.T., Energy management strategy for microgrids by using enhanced bee colony optimization, Energies , 9(1), 5, 2015.

59. Marzband, M., Azarinejadian, F., Savaghebi, M., Guerrero, J.M., An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with markov chain, IEEE Syst. J. , 2017.

60. Prathyush, M., Jasmin, E.A., Fuzzy Logic Based Energy Management System Design for AC Microgrid, In Proceedings of the International Conference on Inventive Communication and Computational Technologies (ICICCT) , Coimbatore, India, 20 April 2018.

61. De Santis, E., Rizzi, A., Sadeghian, A., Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids, Appl. Soft Comput. J. , 2017.

62. Ma, L., Liu, N., Zhang, J., Tushar, W., Yuen, C., Energy Management for Joint Operation of CHP and PV Prosumers Inside a Grid-Connected Microgrid: A Game Theoretic Approach, IEEE Trans. Ind. Inform. , 2016.

63. Leonori, S., Rizzi, A., Paschero, M., Mascioli, F.M.F., Microgrid Energy Management by ANFIS Supported by an ESN Based Prediction Algorithm, In Proceedings of the International Joint Conference on Neural Networks (IJCNN) , Rio de Janeiro, Brazil, 8–13 July 2018.

64. Liu, N., Yu, X., Wang, C., Wang, J., Energy Sharing Management for Microgrids with PV Prosumers: A Stackelberg Game Approach, IEEE Trans. Ind. Inform. , 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Microgrid Technologies»

Представляем Вашему вниманию похожие книги на «Microgrid Technologies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Microgrid Technologies»

Обсуждение, отзывы о книге «Microgrid Technologies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x