Helmut Satz - Heuschrecken haben keinen König

Здесь есть возможность читать онлайн «Helmut Satz - Heuschrecken haben keinen König» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Heuschrecken haben keinen König: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Heuschrecken haben keinen König»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Vogelschwärme führen komplexe Manöver aus über uns am Himmel, Fische vollbringen Ähnliches in den Tiefen der See. Im asiatischen Dschungel zeigen Leuchtkäfer Lichtvorführungen, in denen Tausende von Käfern in perfekter, synchroner Harmonie strahlen. Diese und ähnliche Vorgänge haben dazu geführt, dass Mathematiker und Physiker sich mit Kollegen der Biologie zusammengefunden haben, um die dem Schwarmverhalten zugrunde liegende Struktur zu erforschen. Tatsächlich ist diese Struktur universell und ähnlich der, die man in der Physik vieler wechselwirkender Teilchen findet. Das Entstehen und die Struktur eines Vogelschwarms entsprechen in vieler Hinsicht der Magnetisierung von Eisen, bei der ganz plötzlich die Spins der meisten Atome in die gleiche Richtung weisen. Die Synchronisierung der Leuchtkäferstrahlung wiederum beruht auf Mechanismen, die der Lichtemission eines Lasers ähneln.<br> <br> Dieses Buch beschreibt die verschiedenen Formen des Schwarmverhaltens von Tiergemeinschaften und stellt diesen dann die entsprechenden Strukturen in Physik und Informatik gegenüber. Doch keine Angst: es wird nur einfache Mathematik benötigt, und auch die angeführte Physik und Biologie bewegt sich auf allgemeinverständlichem Niveau. Erleben Sie mit, wie aus einfachen Gesetzmäßigkeiten die komplexesten Phänomene entstehen können – ohne dass es einer zentralen Kontrollinstanz bedarf.<br>

Heuschrecken haben keinen König — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Heuschrecken haben keinen König», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Abb. 2.3Ordnungsmaß Δ als Funktion der Anzahl N von Insekten pro Quadratmeter (nach Buhl et al. 2006).

Es gibt dabei also einen tipping point , einen Dichtewert, bei dem sich alles ändert. Wie kann so etwas zustande kommen? Der Übergang von solitärer Existenz zum geselligen Schwarmleben bei Heuschrecken ist offensichtlich ein biologischer Vorgang, eine Änderung im Verhalten von Lebewesen. Aber das Entstehen zusammenhängender, dicht gepackter Haufen von Einzelteilen ist etwas eher Geometrisches. Kann man das Entstehen von Verbindungen, von Zusammenhang irgendwie als ein mathematisches Modell formulieren? Das wollen wir jetzt als Erstes näher untersuchen. In weiteren Kapiteln werden wir dann anhand anderer Tierarten darauf eingehen, wie eine Kommunikation zwischen den einzelnen Mitgliedern des Schwarms möglich ist und wie sich ein Schwarm in seiner Fortbewegung koordinieren kann.

3

Das Entstehen von willkürlicher Verbindung

E pluribus unum (Aus vielen wird eines)

Wappenspruch der Vereinigten Staaten von Amerika

Große Gebilde sind meist aus kleineren zusammengesetzt, mit einem Bauplan. So bestehen Häuser aus Bausteinen und Materie besteht aus Atomen, die wiederum aus einem Kern und diesen umkreisenden Elektronen. In diesen und einer Vielzahl ähnlicher Fälle gibt es klare Vorgaben, wie das Zusammenfügen zu geschehen hat. Hier wollen wir aber eine grundsätzlich andere Form von Verknüpfung betrachten: Wie können aus vielen gleichen Einzelteilen zusammenhängende Gebilde entstehen, wenn diese Einzelteile vollkommen willkürlich verteilt werden, zusammengewürfelt ohne irgendeinen Plan? Gibt es da doch noch zuständige Gesetze?

Bereits 2500 Jahre vor Christi entstand in China ein Spiel, das heute als das älteste aller Brettspiele gilt: das meist mit seinem japanischen Namen bezeichnete Spiel Go . Auf einem Brett von 19 × 19 Quadraten (es gibt auch kleinere) werden auf die Schnittpunkte Steine gesetzt; ein Spieler hat weiße, der andere hat schwarze. Einmal gesetzte Steine dürfen nicht mehr bewegt werden; nur wenn eine Gruppe von Steinen der einen Seite vollständig von denen der anderen umzingelt ist, werden die betroffenen Steine entfernt. Der Sieger dieses Spiels ist derjenige, der am Ende über die größten von ihm beherrschten Bereiche verfügt. Natürlich darf der Sieger seine Steine nicht willkürlich setzen, die Gewinnstrategie ist noch viel komplexer als die bei Schach, und erst vor drei Jahren (bei Schach schon vor 20 Jahren) hat ein Computer den besten Go-Meister besiegt.

Wir können uns aber auch eine planlose, stochastische Form des Go-Spiels vorstellen. Wenn man die Steine willkürlich auf das Brett stellt, wie viele sind dann notwendig, um eine Seite des Bretts mit der anderen zu verbinden? Oder, in anderen Worten, bei wie vielen Steinen wird das Brett in zwei getrennte Bereiche geteilt? Das, im Gegensatz zum eigentlichen Go-Spiel, ist eine Frage an die Mathematik, und obwohl das Ganze so einfach erscheint, gibt es bisher keine klare mathematische Antwort: Man kann das nur auf Computern durchspielen, und dann findet man, dass wenn etwa 56 % der Schnittpunkte besetzt sind, im Mittel eine Verbindung besteht. Kurioserweise kann man eine Variante, in der die Steine nicht auf die Schnittpunkte, sondern auf die Verbindungslinien gesetzt werden, auch exakt berechnen, und hier ist der kritische Wert 50 %. Das Spiel selbst aber zeigt uns, dass die eingangs gestellte Frage, wie entsteht aus vielen Einzelteilen eine Struktur, offensichtlich die Menschheit schon von Anfang an fasziniert hat.

Abb 31Sukzessive Anhäufung von Bierdeckeln auf einem Tisch Aber die Natur - фото 6

Abb. 3.1Sukzessive Anhäufung von Bierdeckeln auf einem Tisch.

Aber die Natur ist ja kein Go-Brett, keine diskrete Einteilung – wir möchten bestimmen, wann sich kontinuierlich verteilte Objekte zu einem Ganzen verbinden. Um das plötzliche Erscheinen eines solchen zusammenhängenden Gebildes zu verstehen, fangen wir mit einer deutschen Variante an, die man vielleicht „das Bierdeckelspiel“ nennen könnte. Wir nehmen einen quadratischen Tisch mit einer Fläche von 1 m 2und werfen auf diesen Tisch willkürlich runde Bierdeckel, die ihrerseits eine Fläche von 100 cm 2haben, also einen Radius von knapp 6 cm (Abb. 3.1). Es macht nichts, dass dabei Deckel teilweise aufeinander zum Liegen kommen. In Abb. 3.1 sind einige so sukzessive erzeugte Konfigurationen dargestellt: Neben einzelnen Deckeln findet man Inseln aus mehreren Deckeln, und mit zunehmender Deckelzahl werden die Inseln immer mehr und immer größer. Und irgendwann, beim Wurf noch eines weiteren Deckels gibt es plötzlich eine Insel, die von der einen Tischseite zur anderen reicht. Daneben gibt es noch kleinere, aber diese eine verbindet nun die gegenüberliegenden Tischseiten miteinander. Wie viele Deckel muss man werfen, damit das geschieht? Die Anzahl variiert natürlich von Spiel zu Spiel immer ein wenig, aber wenn wir über viele Spiele mitteln, erfahren wir aus der dafür zuständigen mathematischen Theorie bei den vorgegebenen Tisch- und Deckelgrößen, dass die Verbindung der Seiten (das Einsetzen von Zusammenhang) bei etwa 110 Deckeln passiert. Die Summe aller Deckel ergibt dann eine Gesamtfläche von 11 000 cm 2beziehungsweise 1,1m 2, die etwas größer ist als die des Tisches. Das liegt wiederum daran, dass die Deckel teilweise aufeinanderliegen, weswegen auch trotz der größeren Gesamtfläche der Deckel noch nicht die gesamte Tischfläche überdeckt ist.

Mathematiker und Physiker nennen ein solches plötzliches Einsetzen einer Verbindung Perkolation. In der Perkolationstheorie untersucht man, wie aus vielen gleichen, völlig willkürlich angeordneten Einzelteilen ganz plötzlich ein zusammenhängendes Gebilde entstehen kann. Am Übergangspunkt sind somit schlagartig auch beliebig weit entfernte Teile miteinander verbunden. Die Perkolationstheorie ist heute ein aktuelles und äußerst vielseitiges Gebiet, mit Anwendungen, die von Schmelzprozessen und Netzwerkschaltung über Waldbrände bis hin zur Entstehung von Galaxien reichen.

Abb 32Anstieg der Flächendeckung mit Deckeldichte Der Begriff Perkolation - фото 7

Abb. 3.2Anstieg der Flächendeckung mit Deckeldichte.

Der Begriff Perkolation kommt aus der Kaffeezubereitung, bei der man Wasser in einen mit gemahlenem Kaffee gefüllten Filter gießt. Zunächst geschieht nichts, aber dann, plötzlich, bei einer ganz bestimmten Wassermenge, entsteht Durchfluss; es fließt Kaffee aus. Es ist eben dieser Durchfluss, den man als Perkolation bezeichnet, und in Amerika heißts die Kaffeemaschine deshalb auch Perkolator. Etwas ganz Ähnliches geschieht beim Blumengießen: Erst versickert das hinzukommende Wasser, und dann plötzlich fließt es unten aus dem Topf heraus. Das Überraschende an diesen Vorgängen ist das plötzliches Einsetzen: Es fließen nicht erst einige Tröpfchen und dann immer mehr, sondern erst nichts und dann voller Fluss. Bei unserem Bierdeckelspiel ist das auch der Fall. Wenn wir das nach N Würfen von Bierdeckeln abgedeckte Gebiet mit der gesamten Tischfläche vergleichen, dann erhalten wir das folgende Bild. Zunächst steigt das Gebiet nur langsam an, da ja die Deckel einerseits mal hier, mal da, andrerseits aber teilweise übereinanderliegen. Bis jetzt ist ein Großteil des Tisches noch leer. Aber sobald wir in die Nähe der kritischen Deckeldichte kommen, wächst das bedeckte Gebiet plötzlich rasant an und erreicht fast die Tischflächengröße. Mit noch weiter zunehmender Deckelzahl ist dann irgendwann der ganze Tisch bedeckt (Abb. 3.2).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Heuschrecken haben keinen König»

Представляем Вашему вниманию похожие книги на «Heuschrecken haben keinen König» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Heuschrecken haben keinen König»

Обсуждение, отзывы о книге «Heuschrecken haben keinen König» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x