Water, Climate Change, and Sustainability

Здесь есть возможность читать онлайн «Water, Climate Change, and Sustainability» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Water, Climate Change, and Sustainability: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Water, Climate Change, and Sustainability»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. 
is a timely and in-depth examination of the concept of sustainability
as it relates to water resources management in the context of climate change risks. 
Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: 
Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action 
 is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.

Water, Climate Change, and Sustainability — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Water, Climate Change, and Sustainability», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Bio‐based systems that can sustain itself on energy supplied by renewable sources such as waste biomass from the process itself and other renewable sources of energy, such as wind and water, can play an important role in achieving the SDGs. Reasonable assessments of the water‐energy nexus in bio‐based systems are fundamental in understanding the effects of resource pressure, the interconnection of both resources, and the delicate balances required to develop sustainable bio‐based systems, and hence contribute to the SDGs. In addition, assessment of bio‐based systems in comparison to petroleum‐based systems is important to evaluate their environmental impacts and ensure the sustainability of the bio‐based systems. Water and energy intensity, efficiency and productivity are some of the indicators that can guide us towards more sustainable bio‐based technologies and help attain the SDGs 6, 7, 12, and 13.

REFERENCES

1 Bauder, J. (2019). The Right Strategy for Irrigating Your Canola Crop. Available at: http://waterquality.montana.edu/farm‐ranch/irrigation/other_crops/canola.html(accessed on August 28, 2019)

2 Bennett, A.S. and Anex, R. P. (2008). Farm‐Gate Production Costs of Sweet Sorghum as a Bioethanol Feedstock. Transactions Of The ASABE, 51(2), 603–613.

3 Berger, M., van der Ent, R., Eisner, S., Bach, V., and Finkbeiner, M. (2014). Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science & Technology, 48(8), 4521–4528.

4 Berndes, G. (2002). Bioenergy and water — the implications of large‐scale bioenergy production for water use and supply. Global Environmental Change, 12, 253–271.

5 Biotechnology Innovation Organization. (2017). The Biobased Economy : Measuring Growth and Impacts.

6 Bosch, R., van de Pol, M., and Philp, J. (2015). Policy: Define biomass sustainability. Nature, 523(7562), 526–527.

7 Broeren, M.L.M., Zijp, M.C., Waaijers‐van der Loop, S.L. et al. (2017). Environmental assessment of bio‐based chemicals in early‐stage development: a review of methods and indicators. Biofuels, Bioproducts and Biorefining, 11(4), 701–718.

8 Burnham, A., Wang, M.Q., and Wu, Y. (2006). Development and applications of GREET 2.7 ‐ The Transportation Vehicle‐CycleModel. Argonne, IL.

9 Camargo, G.G.T., Ryan, M.R., and Richard, T.L. (2013). Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. BioScience, 63(4), 263–273.

10 Canakci, M., Topakci, M., Akinci, I., and Ozmerzi, A. (2004). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey.

11 Cardone, M., Mazzoncini, M., Menini, S. et al. (2003). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass and Bioenergy, 25(6), 623–636.

12 Condon, A.G., Richards, R.A., Rebetzke, G.J., and Farquhar, G.D. (2004). Breeding for high water‐use efficiency. Journal of Experimental Botany, 55(407), 2447–2460.

13 Critchley, W., Siegert, K. and Chapman, C. (1991). Water Harvesting, A Manual Guide for the Design and Construction of Water Harvesting Schemes for Plant Production. FAO, Rome. Available at: http://www.fao.org/docrep/U3160E/U3160E00.htm(accessed on August 28, 2019)

14 Cséfalvay, E., Akien, G.R., Qi, L., and Horváth, I.T. (2015). Definition and application of ethanol equivalent: Sustainability performance metrics for biomass conversion to carbon‐based fuels and chemicals. Catalysis Today, 239, 50–55.

15 El‐Gafy, I., Grigg, N., and Waskom, R. (2017). Water‐Food‐Energy: Nexus and Non‐Nexus Approaches for Optimal Cropping Pattern. Water Resources Management, 31(15), 4971–4980.

16 Evans, R.G. (2019). Irrigation Technologies Comparison. Available at: https://www.ars.usda.gov/ARSUserFiles/21563/IrrigationTechnologiesComparisons.pdf(accessed May 2019).

17 FAO. (2016). Aquastat. FAO's Global Information System on Water and Agriculture. Available at: http://www.fao.org/aquastat/en/databases/maindatabase(accessed on 28 August 2019).

18 Fraiture, C. and Berndes, G. (2009). Biofuels and water. In R. Howarth and S. Bringezu (Eds.), Biofuels: Environmental Consequences and Interactions with Changing land Use (pp. 139–152). Gummersbach, German. Available at: https://ecommons.cornell.edu/handle/1813/46196(accessed on August 28, 2019).

19 Gaviglio, A., Bertocchi, M., and Demartini, E. (2017). A Tool for the Sustainability Assessment of Farms : Selection, Adaptation and Use of Indicators for an Italian Case Study.

20 Gerbens‐Leenes, P., Hoekstra, A., and van der Meer, T. (2008). Water footprint of bio‐energy and other primary energy carriers, 29 (Value of Water, Research Report Series No. 29).

21 Goldemberg, J., Coelho, S.T., and Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Energy Policy, 36(6), 2086–2097.

22 Hamzei, J., and Seyyedi, M. (2016). Energy use and input–output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil and Tillage Research, 157, 73–82.

23 IEA. (2018). World Energy Balances 2018. Available at: https://webstore.iea.org/world‐energy‐balances‐2018(accessed on 28 August 2019).

24 IGBP. (2015). International Geosphere‐Biosphere Programme. Available at: http://www.igbp.net/globalchange/greatacceleration.4.1b8ae20512db692f2a680001630.html(accessed on 28 August 2019).

25 International Organization for Standardization. (2006). ISO 14040:2006 ‐ Environmental management ‐ Life cycle assessment ‐ Principles and framework. International Organization for Standardization.

26 IRENA. (2019). International Renewable Energy Agency (IRENA). Available at: http://www.irena.org/(accessed on May 19, 2019).

27 Iriarte, A., Rieradevall, J., and Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336–345.

28 Jessen, H. (2012). Dropping Water Use. Ethanol Producer Magazine. Available at: http://www.ethanolproducer.com/articles/8860/dropping‐water‐use(accessed on August 28, 2019).

29 Kallivroussis, L., Natsis, A., and Papadakis, G. (2002). RD—Rural Development: The Energy Balance of Sunflower Production for Biodiesel in Greece. Biosystems Engineering, 81(3), 347–354.

30 Khan, S., Khan, M.A., Hanjra, M.A., and Mu, J. (2009). Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy, 34(2), 141–149.

31 Kraatz, S., Reinemann, D.J., and Berg, W. (2009). Energy Inputs for Corn Production in Wisconsin and Germany. Available at: https://doi.org/10.13031/2013.28850 (accessed on 28 August 2019)

32 Kranz, W.L., Irmak, S., Donk, S.J. va.et al. (2008). Irrigation Management for Corn.

33 Kusek, G., Ozturk, H.H., and Akdemir, S. (2016). An assessment of energy use of different cultivation methods for sustainable rapeseed production. Journal of Cleaner Production, 112, 2772–2783.

34 Langeveld, J.W.A., and van de Ven, G.W.J. (2010). Principles of plant production. In H. Langeveld, J. Sanders, and M. Meeusen (Eds.), The Biobased Economy: Biofuels, Materials and Chemicals in the Post‐oil Era (1st ed., pp. 49–66). Bristol, UK: Earthscan.

35 Langeveld, J.W.A., Dixon, J., and Jaworski, J.F. (2010). Development perspectives of the biobased economy: A review. Crop Science, 50, S–142‐S‐151.

36 Le, P.V.V., Kumar, P., and Drewry, D.T. (2011). Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the National Academy of Sciences, 108(37), 15085–15090.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Water, Climate Change, and Sustainability»

Представляем Вашему вниманию похожие книги на «Water, Climate Change, and Sustainability» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Water, Climate Change, and Sustainability»

Обсуждение, отзывы о книге «Water, Climate Change, and Sustainability» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x