Water, Climate Change, and Sustainability

Здесь есть возможность читать онлайн «Water, Climate Change, and Sustainability» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Water, Climate Change, and Sustainability: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Water, Climate Change, and Sustainability»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. 
is a timely and in-depth examination of the concept of sustainability
as it relates to water resources management in the context of climate change risks. 
Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: 
Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action 
 is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.

Water, Climate Change, and Sustainability — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Water, Climate Change, and Sustainability», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.2.2. Water Use in Biomass Production

Water required to produce fossil fuel is low (1 m 3/GJ), compared to the large quantities of water needed to produce biofuels (24 ‐ 146 m 3/GJ) (Gerbens‐Leenes et al., 2008). In biofuel production process, biomass production uses large quantities of freshwater. In areas with enough rainfall, crops are mainly rainfed; however, irrigation supplements the insufficient supply of water due to low rainfall in dry regions. Irrigation is required at different stages of plant growth, and lack of water at the key growth stages can significantly affect the crop yield.

Crop water demand depends on the evapotranspiration (ET) rate, which is the process of evaporation of water from the soil and transpiration from plants (Schwalbe, 2017). ET is affected by the environmental conditions, such as precipitation, soil moisture, temperature, tillage practices, crop rotation practices, cover crops, types of fertilizers used, and irrigation scheduling. Only ~5% of the water received by the plant is utilized to perform biochemical reactions, transport nutrients, and maintain turgidity, and the remaining is lost through ET (Langeveld and van de Ven, 2010). Of the total water received by the plant, 0.2% to 0.4% actually contribute to the plant dry matter (Condon et al., 2004). For the purpose of sustainable development of bioenergy systems, development of bioenergy crops with low ET is more desirable. ET and water footprint of some crops, including starch, lignocellulosic, and oil containing crops, which can be used for bioenergy purposes, are presented in Table 3.1.

Bioethanol is the main biofuel produced worldwide. The two largest crops for ethanol production are corn in the US and sugarcane in Brazil. Most of the US corn is produced under rainfed conditions; however, in areas where it is irrigated, water is mainly supplied from groundwater sources, such as the Ogallala Aquifer which supplies irrigation water for ~45 million ha of land in eight states of the US (Maupin and Barber, 2005). Sugarcane is a perennial crop, with high concentration of sugar juices, which is mostly produced under rainfed conditions (Moreira, 2007). Irrigation is becoming necessary as sugarcane production is expanding to arid areas (Goldemberg et al., 2008). Irrigation needed for most of the crops grown for food, except corn, is higher than that for dedicated energy crops, such as switchgrass, miscanthus, willow, poplar, and eucalyptus (Fraiture and Berndes, 2009). Corn production in the US needs low quantities of water, because it is grown in areas with enough rainfall (Le et al., 2011; VanLoocke et al., 2012; Wu and Liu, 2012). Other types of biomass used for energy production, such as sewage sludge and manure, have little to no water requirements in the production phase. Sewage sludge and manure can be used as by‐product of the systems for bioenergy generation purposes without additional water requirement for the production phase. Algae production systems need a large quantity of water, however, in a closed system where most of the water is recycled, the water footprint is between 1.4 – 5.8 m 3/kg of dry algal biomass produced (Martins et al., 2018).

Table 3.1 Evapotranspiration and water footprint of some crops for energy purposes.

Feedstock ETm 3/GJ feedstock * Water footprintm 3/kg feedstock * Reference
Sugarcane 18–124 0.12–0.59 Berndes, 2002; Fraiture and Berndes, 2009
Sugar beet 48–151 0.11–1.11 Berndes, 2002; Fraiture and Berndes, 2009
Corn 37–190 0.48–1.43 Berndes, 2002; Fraiture and Berndes, 2009; Postel, 1998
Wheat 21–199 0.28–1.67 Berndes, 2002; Fraiture and Berndes, 2009; Postel, 1998
Sweet sorghum 0.18 Bennett and Anex, 2008
Grain sorghum 2.67 Critchley et al., 1991
Cassava 0.55 Liu et al., 2007
Sweet potato 0.23 Liu et al., 2007
Rapeseed 46–81 0.83–2.2 Berndes, 2002
Oil palm 3.2 Berndes, 2002
Soybean 1.43–2.5 Postel, 1998
Canola 1.8 Bauder, 2019
Lignocellulosic crops 7–68 0.11–1 Berndes, 2002; Robins et al., 2009

*ET and water footprint for the production of some agricultural crops, including starch, lignocellulosic, and oil containing crops.

3.2.3. Water Use in Biomass Conversion to Biofuels

Biomass processing uses water for buffers and media preparation, pretreatment, cleaning, heating, waste heat recovery, cooling, as well as the reactant and fluidizing agent. Processing phase in bioethanol industry uses water mainly for cooling purpose (Phillips et al., 2007). While water use in processing phase may be recycled, there are water losses primarily due to evaporation from cooling towers and utility systems (Phillips et al., 2007). In the US, 1 L of ethanol production from corn grain requires ~3 L of water (University of Illinois Extension, 2009). Table 3.2summarizes the water footprint of biofuels from different feedstocks. Ethanol production from sugarcane in Brazil requires large amount of water for washing, condensing the vapor, and cooling the fermentation broth (Stone et al., 2013).

Most of the biorefineries are located in the same regions of biomass production, which reduces the transportation and logistics costs; however, the large quantities of water demand by the biorefineries exert pressure on the limited water resources. For example, corn ethanol biorefineries in the US are mainly located in the Midwest, where there is already a pressing need for water in biomass production, food production, and processing systems (Phillips et al., 2007). Water use in the corn ethanol industry in the US is taken from the local aquifer (Phillips et al., 2007). Due to the concerns over water use in bioprocessing, there is an interest in using improved systems to avoid evaporation and leaks (Stone et al., 2013). One solution is use of “zero discharge” system that recycles water in the ethanol industry and avoids the discharge (Phillips et al., 2007). Cooling systems is a main water consumer in ethanol biorefineries (Phillips et al., 2007). Air cooling can be implemented to replace the cooling water. Biodiesel production industry also requires large amount of water, ranging from 119 m 3/GJ for biodiesel production from canola, to 444 m 3/GJ for biodiesel production from palm ( Table 3.2). Different conversion phases of corn to ethanol and soybean to biodiesel are presented in Figure 3.2.

Table 3.2 Water footprint of biofuels from different feedstocks.

Fuel Feedstock Water footprint (m 3/GJ energy) * Reference
Bioethanol Sugarcane 20–63 Postel, 1998
Sugar beet 96 Yang et al., 2009
Corn 87–90 Postel, 1998
Sweet sorghum 31 Berndes, 2002
Grain sorghum 319 Critchley et al., 1991
Cassava 113 Yang et al., 2009
Sweet potato 78 Yang et al., 2009
Switchgrass 67 Robins et al., 2009
Biodiesel Rapeseed 165 Yang et al., 2009
Palm 444 Yang et al., 2009
Soybean 237 Critchley et al., 1991
Canola 119 Bauder, 2019;

*Data shows the water footprint for production of biomass and conversion to fuels.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Water, Climate Change, and Sustainability»

Представляем Вашему вниманию похожие книги на «Water, Climate Change, and Sustainability» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Water, Climate Change, and Sustainability»

Обсуждение, отзывы о книге «Water, Climate Change, and Sustainability» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x