Caner Ozdemir - Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms

Здесь есть возможность читать онлайн «Caner Ozdemir - Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of 
 covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. 
This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. 
The author covers a wide variety of topics, including: 
Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, 
 also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Matlab code 1.2 Matlab file “Figure1‐2.m”_________________________________

%-------------------------------------------------------- % This code can be used to generate Figure Figure 1.2%-------------------------------------------------------- % This file requires the following files to be present in the same % directory: % %prince.wav clear all close all % Read the sound signal "prince.wav" [y,Fs] = audioread('prince.wav'); sound(y,Fs); %play the sound N=length(y); t=0:.8/(N-1):.8; %form time vector % FREQUENCY DOMAIN SIGNAL Y=fft(y)/N; % Calculate the spectrum of the signal df=1/(max(t)-min(t)); % Find the resolution in frequency f=0:df:df*(length(t)-1); % Form the frequency vector plot(f(1:2:N)*1e-3,abs(Y(1:(N+1)/2)),'k') %downsample for plotting axis([-1 20 0 .035]) grid minor set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('frequency, KHz'); ylabel('amplitude'); title('\itfrequency domain signal');

Matlab code 1.3 Matlab file “Figure1‐3.m”_________________________________

%-------------------------------------------------------- % This code can be used to generate Figure 1.3%-------------------------------------------------------- % This file requires the following files to be present in the same % directory: % % prince.wav % matplot.m clear all close all % Read the sound signal "prince.wav" [y,Fs] = audioread('prince.wav'); sound(y,Fs); N = length(y); t = 0:.8/(N-1):.8; %form time vector df = 1/max(t); f = 0:df:df*(length(t)-1); % TIME FREQUENCY PLANE SIGNAL A=spectrogram(y,256,250,400,1e4); % Calculate the spectrogram matplot(t,f*1e-3, (abs(A)),30); % Display the signal in T-F domain colormap(1-gray); % Change the colormap to grayscale grid minor set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('time, s'); ylabel('Frequency, KHz'); title('\itsignal in time-frequency plane');

Matlab code 1.4 Matlab file “Figure1‐5.m”_________________________________

%-------------------------------------------------------- % This code can be used to generate Figure 1.5%-------------------------------------------------------- % This file requires the following files to be present in the same % directory: % % tot30.mat % stft.m clear close all load tot30; % load the measured scattered field % DEFINITION OF PARAMETERS f = linspace(6,18,251)*1e9; %Form frequency vector BW = 6e9; % Select the frequency window size d = 2e-9; %Select the time delay % DISPLAY THE FIELD IN JFT PLANE [B,T,F] = stft(tot30,f,BW,50,d); xlabel('--->Time (nsec)'); ylabel('--> Freq. (GHz)'); cc = colorbar; tt = title(cc,'dBsm'); tt.Position = [ 8 -15 0 ]; colormap(1-gray) set(gca,'FontName', 'Arial', 'FontSize',12,'FontWeight','Bold'); axis tight; xlabel('time, ns'); ylabel('Frequency, GHz');

Matlab code 1.5 Matlab file “Figure1‐8.m”_________________________________

%-------------------------------------------------------- % This code can be used to generate Figure 1_8 %-------------------------------------------------------- clear all close all %% DEFINE PARAMETERS t = linspace(-50,50,1001); % Form time vector df = 1/(t(2)-t(1)); % Find frequency resolution f = df*linspace(-50,50,1001); % Form frequency vector %% FORM AND PLOT RECTANGULAR WINDOW b(350:650) = ones(1,301); b(1001) = 0; subplot(221); h=area(t,b); grid(gca,'minor') set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('time, s'); axis([-50 50 0 1.1]) set(h,'FaceColor',[.5 .5 .5]) subplot(222); h=area(f,fftshift(abs(ifft(b)))); grid(gca,'minor') set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('frequency, Hz') axis([-40 40 0 .35]) set(h,'FaceColor',[.5 .5 .5]) %% FORM AND PLOT HANNING WINDOW bb = b; bb(350:650) = hanning(301)'; subplot(223); h = area(t,bb); grid(gca,'minor') set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('time, s'); axis([-50 50 0 1.1]) set(h,'FaceColor',[.5 .5 .5]) subplot(224); h = area(f,2*fftshift(abs(ifft(bb)))); grid(gca,'minor') set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('frequency, Hz') axis([-40 40 0 .35]) set(h,'FaceColor',[.5 .5 .5])

Matlab code 1.6 Matlab file “Figure1‐11.m”________________________________

%-------------------------------------------------------- % This code can be used to generate Figure %-------------------------------------------------------- clear close all % TIME DOMAIN SIGNAL a = 0:.1:1; t = (0:10)*1e-3; stem(t*1e3,a,'k','Linewidth',2);% Figure 1-11 (a) set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('time, ms'); ylabel('s[n]'); axis([-0.2 10.2 0 1.2]); % FREQUENCY DOMAIN SIGNAL b = fft(a); df = 1./(t(11)-t(1)); f = (0:10)*df; ff = (-5:5)*df; figure; stem(f,abs(b),'k','Linewidth',2); % Figure 1-11 (b) set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('frequency, Hz') ylabel('S[k]'); axis([-20 1020 0 6.5]); figure; stem(ff,fftshift(abs(b)),'k','Linewidth',2);% Figure 1-11 (c) set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); xlabel('frequency, Hz') ylabel('S[k]'); axis([-520 520 0 6.5]);

References

1 Allen, J. (1977). Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing 25 (3): 235–238.

2 Brenner, N. and Rader, C. (1976). A new principle for fast Fourier transformation. IEEE Acoustics, Speech & Signal Processing 24: 264–266.

3 Chen, V.C. and Ling, H. (2002). Time‐Frequency Transforms for Radar Imaging and Signal Processing. Norwood, MA: Artech House.

4 Cohen, L. (1989). Time frequency distribution – a review. Proceedings of the IEEE 77 (7): 941–981.

5 Cooley, J.W. and Tukey, J.W. (1965). An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19: 297–301.

6 Daniels, R.W. (1974). Approximation Methods for Electronic Filter Design. New York: McGraw‐Hill.

7 Danielson, G. and Lanczos, C. (1942). Some improvements in practical Fourier analysis and their application to X‐ray scattering from liquids. Journal of the Franklin Institute 233 (4): 365.

8 Du, L. and Su, G. (2003). Target number detection based on a order Choi‐Willams distribution. Signal Processing and its Applications, 2003, Proceedings, Seventh International Symposium, Paris, France (1–4 July 2003). vol. 1, pp. 317–320.

9 Duhamel, P. (1990). Algorithms meeting the lower bounds on the multiplicative complexity of length‐2n DFTs and their connection with practical algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing 38: 1504–1151.

10 Filindras, A., Larsen, U.O., and Ling, H. (1996). Scattering from the EMCC dielectric slabs: simulation and phenomenology interpretation. Journal of the Electromagnetic Waves and Applications 10: 515–535.

11 Fourier, J. (1955). The Analytical Theory of Heat. New York: Dover Publication.

12 Nuttall, A.T. (1988). Wigner distribution function: relation to short‐term spectral estimation, smoothing, and performance in noise, Naval Underwater Systems Center. Technical Report, 8225.

13 Özdemir, C. and Ling, H. (1997). Joint time‐frequency interpretation of scattering phenomenology in dielectric‐coated wires. IEEE Transactions on Antennas and Propagation 45 (8): 1259–1264.

14 Qian, S. and Chen, D. (1996). Joint Time‐Frequency Analysis: Methods and Applications. New Jersey: Prentice Hall.

15 Richmond, J.H. and Newman, E.H. (1976). Dielectric‐coated wire antennas. Radio Science 11: 13–20.

16 Runge, C. (1903). Zeit für Math und Physik 48: 433.

17 Shannon, C.E. (1949). Communication in the presence of noise. Proceedings of the Institute of Radio Engineers 37 (1): 10–21.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»

Представляем Вашему вниманию похожие книги на «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»

Обсуждение, отзывы о книге «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x