Caner Ozdemir - Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms

Здесь есть возможность читать онлайн «Caner Ozdemir - Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of 
 covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. 
This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. 
The author covers a wide variety of topics, including: 
Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, 
 also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Source: Caner Ozdemir.

Figure 115 SAR image of the famous hook of Cape Cod Massachusetts USA - фото 51

Figure 1.15 SAR image of the famous “hook” of Cape Cod, Massachusetts, USA.

Source: www.jpl.nasa.gov/radar/sircxsar/capecod2.html.

1.10 Effect of Aliasing in Radar Imaging

In radar applications, the data are collected within a finite bandwidth of frequencies. According to the sampling theory, if the radar signal is g ( t ) and its spectrum is G ( f ), the frequency components beyond a specific frequency B is zero, that is

(1.31) then the timedomain signal g t should be sampled at least twice the - фото 52

then the time‐domain signal g ( t ) should be sampled at least twice the bandwidth in frequency as

(1.32) картинка 53

where f sstands for the sampling frequency.

When the radar imaging is concerned, the scattered electric field has the form as given in Eq. 1.30. The sampling theorem can be applied in the following manner:

Suppose that target to be imaged lies in the range direction within the range width or range extend of R maxsuch that

(1.33) as depicted in Figure 116b In the case of imaging radar this figure - фото 54

as depicted in Figure 1.16b. In the case of imaging radar, this figure represents the range profile of the target. The FT of g ( r ) represents its spectrum that is theoretically extends to infinity in the frequency axis (see Figure 1.16a). The main problem is to get the digitized (or sampled) versions of g ( r ) from digitized (or sampled) versions of G ( k ) or G ( f ) with adequate samples so that no aliasing occurs. Here, k stands for the wave number and related to the operating frequency as

Figure 116 The Nyquist sampling procedure for getting unaliased range image - фото 55

Figure 1.16 The Nyquist sampling procedure for getting unaliased range image. (a) Frequency‐domain radar signal for a range windowed data, (b) range domain signal, (c) sampling comb signal in frequency domain, (d) its range domain equivalent, (e) critically sampled version of the frequency‐domain signal, and (f) its range domain equivalent.

(1.34) картинка 56

where c is the speed of light. Utilizing the relationship between the wave‐number; k and the distance; R in Eq. 1.30, the sampling in the wave number domain should satisfy the following inequality:

(1.35) Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms - изображение 57

This inequality is forced by the famous Nyquist sampling condition. The minimum sampling frequency, then, should be equal to

(1.36) Then the sampled version of frequencydomain signal G f is obtained by the - фото 58

Then, the sampled version of frequency‐domain signal G ( f ) is obtained by the multiplication of the G ( f ) with the following impulse comb function:

(1.37) The plot of this comb function is shown in Figure 116c By taking the IFT of - фото 59

The plot of this comb function is shown in Figure 1.16c. By taking the IFT of this comb function, we can get another comb function in the range domain as

(1.38) as depicted in Figure 116d The sampled version of frequencydomain signal G - фото 60

as depicted in Figure 1.16d. The sampled version of frequency‐domain signal, G s( f ) can be get by multiplying the original frequency‐domain signal, G ( f ) with the impulse comb function in Figure 1.16c as

(1.39) that is shown in Figure 116e The range domain equivalent of the - фото 61

that is shown in Figure 1.16e. The range domain equivalent of the frequency‐domain sampled signal can be found via inverse Fourier transforming as

(1.40) Figure 117 The effect of sampling rate a No aliasing due to oversampling - фото 62

Figure 117 The effect of sampling rate a No aliasing due to oversampling - фото 63

Figure 1.17 The effect of sampling rate. (a) No aliasing due to oversampling and (b) aliased or distorted range domain waveform due to undersampling.

where “*” denotes the convolution operation. Therefore, the resultant range domain signal is periodic with ( c /2 df ) intervals. If df is chosen to be equal to ( df ) min= c /2 R max, the period of g s( r ) becomes R maxas illustrated in Figure 1.16f. If G ( f ) is sampled finer than ( df ) min, that is, over‐sampled, no aliasing occurs and the resultant g s( r ) signal will be similar to the one in Figure 1.17a. Therefore, when the DFT is used, the original range domain signal falls within one period of g s( r ) and can be recovered without any distortion. When a sampling rate of df ≥ ( df ) minis used, g s( r ) signal is aliased as demonstrated in Figure 1.17b and the original range domain signal g ( r ) is distorted within one period of ( c /2 df ). Therefore, the recovery of g ( r ) is not possible due to undersampling of G ( f ). The effect of aliasing in ISAR imaging will be covered in Chapter 5, Section 5.2.

1.11 Matlab Codes

Below are the Matlab source codes that were used to generate all of the Matlab‐produced figures in this chapter. The codes are also provided inside the CD of this book.

Matlab code 1.1 Matlab file “Figure1‐1.m”_________________________________

%‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ % This code can be used to generate Figure Figure 1.1 %‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ % This file requires the following files to be present in the same % directory: % %prince.wav clear all close all % Read the sound signal "prince.wav" [y,Fs] = audioread('prince.wav'); sound(y,Fs); %play the sound N=length(y); % TIME DOMAIN SIGNAL t=0:.8/(N-1):.8; %form time vector plot(t,y,'k'); %downsample for plotting grid minor set(gca,'FontName', 'Arial', 'FontSize',12, 'FontWeight','Bold'); axis tight; xlabel('time, s'); ylabel('amplitude'); title('\ittime domain signal');

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»

Представляем Вашему вниманию похожие книги на «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms»

Обсуждение, отзывы о книге «Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x