Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments

Здесь есть возможность читать онлайн «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Considering the uncertainties in mechanical engineering in order to improve the performance of future products or systems is becoming a competitive advantage, sometimes even a necessity, when seeking to guarantee an increasingly high safety requirement. <p><i>Mechanical Engineering in Uncertainties</i> deals with modeling, quantification and propagation of uncertainties. It also examines how to take into account uncertainties through reliability analyses and optimization under uncertainty. The spectrum of the methods presented ranges from classical approaches to more recent developments and advanced methods. The methodologies are illustrated by concrete examples in various fields of mechanics (civil engineering, mechanical engineering and fluid mechanics). This book is intended for both (young) researchers and engineers interested in the treatment of uncertainties in mechanical engineering.

Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 16 Illustration of a trapezoidal membership function in fuzzy set - фото 37

Figure 1.6. Illustration of a trapezoidal membership function in fuzzy set theory

As with previous approaches, a fundamental question concerns the propagation of uncertainties through a function g . As for any value α of the membership function, we can associate an interval; this is tantamount to ultimately performing interval analysis propagation at each level α. The methods discussed in the previous section apply in this way. Purely algebraic propagation is also possible for simple operations (additions, multiplications, powers). For a more detailed view of fuzzy set theory, the reader may refer to Zimmermann (2011).

One of the major drawbacks of fuzzy set theory lies, as for interval analysis, in the absence of a measure of uncertainty, which is equivalent to probability in probability theory. Uncertainty propagation is carried out at a level α, but the link with a measure allowing the quantification of the risk associated with this level α is still missing. In order to remedy this, a measure of uncertainty called possibility has been introduced. This has led to possibility theory, which will be presented in the next section.

1.7. Possibility theory

1.7.1. Theoretical context

Formally, possibility theory is defined on a possibility space Epos , defined as follows:

DEFINITION 1.16.– Letbe a set and E the set of the subsets of Ω. A function Π : E → ℝ is called a possibility measure (or possibility distribution function [PoDF]) if it satisfies the following axioms:

– the function has values between 0 and 1: ∀A ∈ E, 0 ≤ Π(A) ≤ 1;

– the image of the empty set is 0: Π(∅) = 0;

– the image of all the events in the universe is 1: Π(Ω) = 1;

– the function is monotonic: ∀A, B ∈ E, if A ⊆ B then Π (A) ≤ Π(B);

– the function is subadditive: .

DEFINITION 1.17.– Letbe a set, called universe, E the set of the subsets ofand Π a measure of possibility. The triplet (Ω, E, Π) is called the possibility space EPos .

Note that the possibility measure (or PoDF) Π provides a measure of the likelihood of each element of E . The membership functions introduced for fuzzy sets (for example, triangular, trapezoidal functions) are typically used as PoDFs.

DEFINITION 1.18.– Let ξ be an uncertain variable to which the possibility distribution Π is associated. Let картинка 38 and картинка 39 be the lower and upper bounds of the α-cut of ξ. Let f be a non-negative weighting function f : [0,1] → ℝ , monotonically decreasing and verifying the condition of normalization in the integral sense. The f-weighted possibilistic mean operator is:

[1.11] This operator is the equivalent of expectation in the context of probability - фото 40

This operator is the equivalent of expectation in the context of probability theory. By introducing various weighting functions, different levels of importance can be assigned to the different α -cuts of the possibility distribution. There are also similar expressions existing for higher order moments in a possibility context.

In order to be able to compare the likelihood of different events, two quantities, the possibility and necessity of an event, are introduced.

DEFINITION 1.19.– Let ( Ω, E , Π ) be a space of possibility. We call the possibility and necessity of an event e ∈ E , respectively:

[1.12] 113 PROPERTY 12 Let Ω E Π be a space of possibility and an event e - фото 41

[1.13] Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments - изображение 42

PROPERTY 1.2.– Let (Ω, E , Π) be a space of possibility and an event eE . We have the following properties:

[1.14] Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments - изображение 43

[1.15] Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments - изображение 44

[1.16] Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments - изображение 45

[1.17] 118 More intuitively we can say that possibility measures the degree to - фото 46

[1.18] More intuitively we can say that possibility measures the degree to which the - фото 47

More intuitively, we can say that possibility measures the degree to which the facts do not contradict the assumption that an event can happen. If an event has a possibility of 1, it means that there is no reason to believe that the event cannot happen. It does not mean, however, that the event will certainly happen. In order for an event to be certain, both its possibility and its necessity must be equal to 1. On the other hand, if we consider that an event cannot happen, then it must be assigned a possibility of 0.

It should be noted that, similarly to what has been done in probability theory, a cumulative possibility function (CPoF), a cumulative necessity function (CNeF), a cumulative complementary possibility function (CCPoF) and a cumulative complementary necessity function (CCNeF) can be associated with a PoDF. Figure 1.7illustrates these different functions with an example.

Figure 17 Illustrations of a a possibility distribution function PoDF - фото 48

Figure 1.7. Illustrations of (a) a possibility distribution function (PoDF); (b) the cumulative possibility function (CPoF) and the corresponding cumulative necessity function (CNeF)

Note that for the example shown in Figure 1.7, the most likely values are those in the interval [5,7], which have a possibility of 1. The larger intervals encompassing this latter then have progressively smaller possibility values, until they reach 0 for the interval [1,10]. Values below 1 or above 10 are thus considered impossible. All the properties of equations [1.13]– [1.17]can be verified on these curves. Note also that the stepwise nature of the cumulative functions is typical of the modeling of epistemic uncertainties using alternative approaches. Indeed, the quantification of uncertainty is, most of the time, based on experts who would assign likelihood values to the different intervals, thus allowing the construction of the PoDF. The more finely the expert can elicit the uncertainty (by assigning likelihood values to many successively larger nested intervals), the smaller the steps will be. Finally, in terms of uncertainty propagation, given that the PoDFs are, most of the time, based on fuzzy set theory membership functions, they also make use of the same propagation techniques discussed in section 1.6. Propagation is thus typically done by interval propagation for different α -cuts.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments»

Представляем Вашему вниманию похожие книги на «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments»

Обсуждение, отзывы о книге «Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x