Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics

Здесь есть возможность читать онлайн «Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Univariate, Bivariate, and Multivariate Statistics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Univariate, Bivariate, and Multivariate Statistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

AN UPDATED GUIDE TO STATISTICAL MODELING TECHNIQUES USED IN THE SOCIAL AND BEHAVIORAL SCIENCES The revised and updated second edition of
contains an accessible introduction to statistical modeling techniques commonly used in the social and behavioral sciences. The text offers a blend of statistical theory and methodology and reviews both the technical and theoretical aspects of good data analysis.
Featuring applied resources at various levels, the book includes statistical techniques using software packages such as R and SPSS®. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. The thoroughly updated edition includes new chapters on nonparametric statistics and multidimensional scaling, and expanded coverage of time series models. The second edition has been designed to be more approachable by minimizing theoretical or technical jargon and maximizing conceptual understanding with easy-to-apply software examples. This important text:
Offers demonstrations of statistical techniques using software packages such as R and SPSS® Contains examples of hypothetical and real data with statistical analyses Provides historical and philosophical insights into many of the techniques used in modern social science Includes a companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options Written for students of social and applied sciences,
offers a text to statistical modeling techniques used in social and behavioral sciences.

Applied Univariate, Bivariate, and Multivariate Statistics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Univariate, Bivariate, and Multivariate Statistics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

More generally, if T is some statistic, then we can use T as an estimator of a population parameter θ . Whether the estimator T is any gooddepends on several criteria, which we survey now.

On average, in the long run, the statistic T is considered to be an unbiased estimatorof θ if

картинка 65

That is, an estimator is considered unbiased if its expected value is equal to that of the parameter it is seeking to estimate. The biasof an estimator is measured by how much E ( T ) deviates from θ . When an estimator is biased, then E ( T ) ≠ θ , or, we can say E ( T ) − θ ≠ 0. Since the bias will be a positive number, we can express this last statement as E ( T ) − θ > 0.

Good estimators are, in general, unbiased. The most popular example of an unbiased estimator is that of the arithmetic sample mean since it can be shown that:

Applied Univariate Bivariate and Multivariate Statistics - изображение 66

An example of an estimator that is biased is the uncorrected sample variance, as we will soon discuss, since it can be shown that

Applied Univariate Bivariate and Multivariate Statistics - изображение 67

However, S 2is not asymptoticallybiased. As sample size increases without bound, E ( S 2) converges to σ 2. Once the sample variance is corrected via the following, it leads to an unbiased estimator, even for smaller samples:

Applied Univariate Bivariate and Multivariate Statistics - изображение 68

where now,

Consistency 6 of an estimator means that as sample size increases indefinitely - фото 69

Consistency 6 of an estimator means that as sample size increases indefinitely, the variance of the estimator approaches zero. That is, Applied Univariate Bivariate and Multivariate Statistics - изображение 70as n → ∞. We could also write this using a limit concept:

Applied Univariate Bivariate and Multivariate Statistics - изображение 71

which reads “the variance of the estimator T as sample size n goes to infinity (grows without bound) is equal to 0.” Fisher called this the criterion of consistency, informally defining it as “when applied to the whole population the derived statistic should be equal to the parameter” (Fisher, 1922a, p. 316). The key to Fisher's definition is whole population, which means, theoretically at least, an infinitely large sample, or analogously, n → ∞. More pragmatically, картинка 72when we have the entire population.

An estimator is regarded as efficientthe lower is its mean squared error. Estimators with lower variance are more efficient than estimators with higher variance. Fisher called this the criterion of efficiency, writing “when the distributions of the statistics tend to normality, that statistic is to be chosen which has the least probable error” (Fisher, 1922a, p. 316). Efficient estimators are generally preferred over less efficient ones.

An estimator is regarded as sufficientfor a given parameter if the statistic “captures” everything we need to know about the parameter and our knowledge of the parameter could not be improved if we considered additional information (such as a secondary statistic) over and above the sufficient estimator. As Fisher (1922a, p. 316) described it, “the statistic chosen should summarize the whole of the relevant information supplied by the sample.” More specifically, Fisher went on to say:

If θ be the parameter to be estimated, θ 1a statistic which contains the whole of the information as to the value of θ , which the sample supplies, and θ 2any other statistic, then the surface of distribution of pairs of values of θ 1and θ 2, for a given value of θ , is such that for a given value of θ 1, the distribution of θ 2does not involve θ . In other words, when θ 1is known, knowledge of the value of θ 2throws no further light upon the value of θ .

(Fisher, 1922a, pp. 316–317)

2.8 VARIANCE

Returning to our discussion of moments, the varianceis the second moment of a distribution. For the discrete case, variance is defined as:

while for the continuous case Since E y i μ it stands that we may also - фото 73

while for the continuous case,

Applied Univariate Bivariate and Multivariate Statistics - изображение 74

Since E ( y i) = μ , it stands that we may also write E ( y i) as μ . We can also express σ 2as Applied Univariate Bivariate and Multivariate Statistics - изображение 75since, when we distribute expectations, we obtain:

Recall that the uncorrected and biasedsample variance is given by As earlier - фото 76

Recall that the uncorrected and biasedsample variance is given by:

As earlier noted taking the expectation of S 2 we find that E S 2 σ 2 - фото 77

As earlier noted, taking the expectation of S 2, we find that E ( S 2) ≠ σ 2. The actual expectation of S 2is equal to:

which implies the degree to which S 2is biased is equal to We have said that - фото 78

which implies the degree to which S 2is biased is equal to:

картинка 79

We have said that S 2is biased, but you may have noticed that as n increases, ( n − 1)/ n approaches 1, and so E ( S 2) will equal σ 2as n increases without bound. This was our basis for earlier writing Applied Univariate Bivariate and Multivariate Statistics - изображение 80. That is, we say that the estimator S 2, though biased for small samples, is asymptotically unbiasedbecause its expectation is equal to σ 2as n → ∞.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics»

Представляем Вашему вниманию похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics»

Обсуждение, отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x