Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics
Здесь есть возможность читать онлайн «Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Applied Univariate, Bivariate, and Multivariate Statistics
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Applied Univariate, Bivariate, and Multivariate Statistics: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Univariate, Bivariate, and Multivariate Statistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
contains an accessible introduction to statistical modeling techniques commonly used in the social and behavioral sciences. The text offers a blend of statistical theory and methodology and reviews both the technical and theoretical aspects of good data analysis.
Featuring applied resources at various levels, the book includes statistical techniques using software packages such as R and SPSS®. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. The thoroughly updated edition includes new chapters on nonparametric statistics and multidimensional scaling, and expanded coverage of time series models. The second edition has been designed to be more approachable by minimizing theoretical or technical jargon and maximizing conceptual understanding with easy-to-apply software examples. This important text:
Offers demonstrations of statistical techniques using software packages such as R and SPSS® Contains examples of hypothetical and real data with statistical analyses Provides historical and philosophical insights into many of the techniques used in modern social science Includes a companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options Written for students of social and applied sciences,
offers a text to statistical modeling techniques used in social and behavioral sciences.
as one does in the sample or population variance for which there is specified n , one must rather assign to these squared deviations probabilities, which is what is essentially being communicated by the notation “ E ( y i− μ ) 2.” We can “unpack” this expression to read
. That is, the sum of deviations around the mean is always equal to 0 for any data set we may consider. In this sense, we say that the arithmetic mean is the center of gravityof a distribution, it is the point that “balances” the distribution (see Figure 2.8).
for several variables y 1through y pas
is the mean of the p thvariable.
,
, …
are equal to their population counterparts, μ 1, μ 2, … μ p. The expectation of the sample mean vector
is equal to the population mean vector, μ:
is an unbiasedestimator of μsince
.
is an estimator of the population mean μ . However, if we sample a bunch of
from a population for which μ is the actual population mean, we know, both from experience and statistical theory, that
will vary from sample to sample. This is why the estimator
is often a random variable, because its values will each have associated with them a given probability (density) of occurrence. When we use the estimator to obtain a particular number, that number is known as an estimate. An interval estimatorprovides a range of values within which the true parameter is hypothesized to exist within some probability. A popular interval estimator is that of the confidence interval, a topic we discuss later in this chapter.