Applied Soil Chemistry

Здесь есть возможность читать онлайн «Applied Soil Chemistry» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Soil Chemistry: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Soil Chemistry»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book explores the state-of-the-art information regarding applied soil sciences. It covers the fundamentals, model concepts, principles, chemical reactions, functions, chemical recycling, chemical weathering, acid-base chemistry, carbon sequestration, and nutrient availability of soils. Also, it includes soil chemistry of heavy-metals, environment, clay, ion-exchange processes, analytical tools and applications. This book helps to understand the about soil characteristics targeting soil chemical reactions and interactions and its applications.

Applied Soil Chemistry — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Soil Chemistry», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

10. Wilcox, J., Renforth, P., Kraxner, F. (eds.), The Role of Negative Emission Technologies in Addressing Our Climate Goals . Lausanne, Frontiers Media SA, https://scholar.google.com/scholar_url?url=https://www.frontiersin.org/research-topics/9752/pdf%3Futm_source%3Dfweb%26utm_medium%3D-nblog%26utm_campaign%3Dba-sci-ebook--20200300&hl=en&sa=T&oi=gsb-gga&ct=res&cd=0&d=16349358176583991556&ei=ROT-X9fXEYfPmAG-w14KwCw&scisig=AAGBfm1dUf9bJFQ1f8RVUxAXc4tQNKEVNQ, 2020.

11. Batjes, N.H., Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. , 65, 1, 10–21, 2014.

12. Lal, R., Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr. Cycling Agroecosyst. , 81, 2, 113–127, 2008.

13. Lal, R., Follett, R., Kimble, J., Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci. , 168, 12, 827–845, 2003.

14. Hester, R.E. and Harrison, R.M. (Eds.), Carbon capture: Sequestration and storage (Vol. 29). Royal Society of Chemistry, https://pubs.rsc.org/en/content/ebook/978-1-84755-917-3, 2010.

15. Anderson, M.C., PRO. J. Gynecol. Surg. , 7, 3, 191–194, 1991.

16. Schlesinger, W.H. and Andrews, J.A., Soil respiration and the global carbon cycle. Biogeochemistry , 48, 1, 7–20, 2000.

17. Hayes, M.H. and Clapp, C.E., Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Sci. , 166, 11, 723–737, 2001.

18. Post, W.M. and Kwon, K.C., Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. , 6, 3, 317–327, 2000.

19. He, Y., Trumbore, S.E., Torn, M.S., Harden, J.W., Vaughn, L.J., Allison, S.D., Randerson, J.T., Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science , 353, 6306, 1419–1424, 2016.

20. van Diemen, R., AI Annex I: Glossary, in: Climate Change and Land , p. 803, 2019.

21. Halldorsson, G., Sigurdsson, B.D., Finér, L., Gudmundsson, J., Kätterer, T., Singh, B.R., Vesterdal, L., Arnalds, A., Soil Carbon Sequestration–for climate, food security and ecosystem services , Nordic Council of Ministers, 2015.

22. Sun, X., Tang, Z., Ryan, M.G., You, Y., Sun, O.J., Changes in soil organic carbon contents and fractionations of forests along a climatic gradient in China. For. Ecosyst. , 6, 1, 1, 2019.

23. Alexandrov, G.A. and Matsunaga, T., Normative productivity of the global vegetation. Carbon Balance Manage. , 3, 1, 8, 2008.

24. Smith, J., Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature , 433, 57–59, 2005.

25. Zhang, H. and Zhou, Z., Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China. For. Ecosyst. , 5, 1, 17, 2018.

26. Paustian, K., Andren, O., Janzen, H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M., Woomer, P., Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manage. , 13, 230–244, 1997.

27. Lal, R. and Kimble, J., Conservation tillage for carbon sequestration. Nutr. Cycling Agroecosyst. , 49, 1–3, 243–253, 1997.

28. Bellarby, J., Foereid, B., Hastings, A., Cool Farming: Climate impacts of agriculture and mitigation potential , Greenpeace, https://eprints.lancs.ac.uk/id/eprint/68831/1/1111.pdf, 2008.

29. Alvarez, R., A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. , 21, 1, 38–52, 2005.

30. Lowe, A., Beasley, B., Berly, T., Carbon Capture and Storage (CCS) in Australia, in: Issues in Environmental Science and Technology , vol. 29, p. 65, 2010.

31. Ewing, S., Consuming online in Australia, in: Urban consumption , p. 105– 122, 2011.

32. Feron, P.H.M., Attalla, M.I., Puxty, G., Allport, A., Cottrell, A.J., McGregor, J.A., Post-combustion capture (PCC) R&D and pilot plant operation in Australia. In: CSIRO Energy Technology, Newcastle (eds.) IEA GHG 11th Post Combustion CO2 Capture Network meeting; 20–21 May 2008 , IEA Greenhouse Gas R&D Programme, Vienna, Austria, http://hdl.handle.net/102.100.100/121594?index=1, 2008.

33. Conant, R.T., Easter, M., Paustian, K., Swan, A., Williams, S., Impacts of periodic tillage on soil C stocks: A synthesis. Soil Tillage Res. , 95, 1–2, 1–10, 2007.

34. Buhre, B.J., Elliott, L.K., Sheng, C., Gupta, R.P., Wall, T.F., Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. , 31, 4, 283–307, 2005.

35. Hutchinson, J., The record of peat wastage in the East Anglian fenlands at Holme Post, 1848-1978 AD. J. Ecol. , 51, 68, 229–249, 1980.

36. Heathwaite, A.L., Disappearing peat-regenerating peat? The impact of climate change on British peat-lands. Geog. J. , 159, 203–208, 1993.

37. Lal, R., Climate change and food security soil carbon sequestration impacts. Science , 304, 1623, 2004.

38. Lal, R., Soil erosion and carbon dynamics , Elsevier, https://www.sciencedirect.com/science/article/pii/S0167198704001898, 2005.

39. Wardle, D.A., Islands as model systems for understanding how species affect ecosystem properties. J. Biogeogr. , 29, 5–6, 583–591, 2002.

40. Holden, J., Shotbolt, L., Bonn, A., Burt, T., Chapman, P., Dougill, A., Fraser, E., Hubacek, K., Irvine, B., Kirkby, M., Environmental change in moorland landscapes. Earth-Sci. Rev. , 82, 1–2, 75–100, 2007.

41. Harrison, A., Howard, P., Howard, D., Howard, D., Hornung, M., Carbon storage in forest soils. Forestry: An International Journal of Forest Research , 68, 4, 335–348, 1995.

42. Chapman, S., Bell, J., Donnelly, D., Lilly, A., Carbon stocks in Scottish peatlands. Soil Use Manage. , 25, 2, 105–112, 2009.

43. Burges, C.J., A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discovery , 2, 2, 121–167, 1998.

44. Liski, J., Perruchoud, D., Karjalainen, T., Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manage. , 169, 1–2, 159–175, 2002.

45. Paustian, K., Larson, E., Kent, J., Marx, E., Swan, A., Soil C sequestration as a biological negative emission strategy, in: The Role of Negative Emission Technologies in Addressing Our Climate Goals , 2020.

46. Song, X., Pan, G., Zhang, C., Zhang, L., Wang, H., Effects of biochar application on fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosyst. Health Sustainability , 2, 2, e01202, 2016.

47. Crews, T.E. and Rumsey, B.E., What agriculture can learn from native ecosystems in building soil organic matter: A review. Sustainability , 9, 4, 578, 2017.

* Corresponding author : erfan.sadatshojaei@gmail.com

2

A Brief Insight on Factors Controlling Rate of Chemical Weathering of Minerals Existing in Soil

Tejaswini Sahoo1, Rashmirekha Tripathy1, Jagannath Panda1,3, Madhuri Hembram1, Saraswati Soren1, Deepak Kumar Senapati1, C.K. Rath1, Sunil Kumar Sahoo2 and Rojalin Sahu1*

1School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India

2Health Physics Division, BARC, Mumbai, India

3CSIR-IMMT, Bhubaneswar, India

Abstract

Mineral weathering relative to soil has two parts: weathering happened previously where hard rocks have been broken down into clay which ultimately forms soil, loams, and unconsolidated sands both chemically and physically and other is soil and mineral weathering happening currently which acts as vital source of crop nutrients. This chapter discusses background of chemical weathering of minerals, sequence of weathering of minerals from soil, mainly throwing light on the factors which controls the rate of chemical weathering like temperature and time factor, biotic process, oxidation, reduction, water, leaching, acidity, and many more.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Soil Chemistry»

Представляем Вашему вниманию похожие книги на «Applied Soil Chemistry» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Soil Chemistry»

Обсуждение, отзывы о книге «Applied Soil Chemistry» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x