Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The circulatory component of this flow is shown in Figure A3.8and has the same distribution of velocity outside the boundary layer as a line vortex.

The lift force due to circulation is given by the Kutta–Joukowski theorem, called after the two pioneering aerodynamicists who, independently, realised that this was the key to the understanding of the phenomenon of lift generated in subsonic flow on all bodies, including the spinning cylinder:

(A3.1) Wind Energy Handbook - изображение 418

Figure A37 Flow past a rotating cylinder Figure A38 Circulatory flow - фото 419

Figure A3.7 Flow past a rotating cylinder.

Wind Energy Handbook - изображение 420

Figure A3.8 Circulatory flow round a rotating cylinder.

Here Γ is the circulation, or vortex strength, defined as the integral

(A3.2) Wind Energy Handbook - изображение 421

around any path enclosing the body, and v is the velocity tangential to the path s .

Two‐dimensional inviscid potential flow about a general 2‐D body section is non‐unique and is only fixed by defining where the flow separates. A non‐rotating body can have a circulatory flow about any section, the circulation being controlled by where on the section the boundary layers separate. On an aerofoil section, pre‐stall, the sharp trailing edge is the only edge at which the flow separates. Such a flow about an aerofoil as shown in Figure A3.9can be composed of (i) a non‐circulatory flow induced by the approaching free stream, and (ii) a purely circulatory flow that is equivalent to a distribution of vorticity around the section. In general, neither of these flows separate from the trailing edge, i.e. appropriately, but by adding a suitable amount of the latter, thus fixing the circulation, to the former (iii) a composite flow is obtained that does separate from the trailing edge. The condition enforcing separation of the inviscid flow from the trailing edge is known as the Kutta–Joukowski condition . At large distances radially from the axis of a (quasi‐) 2‐D body, the flow field is a combination of the uniform incident flow with a vortex flow if the body has lift (and a line‐source flow if it has significant viscous drag.) The v ‐component of the free stream U in Eq. (A3.2)(and similarly the source flow component if present) integrates around the closed circuit to zero. The v ‐component due to a line vortex, taken, for example, on a circular path concentric with the vortex, is v = k/r, where k is a constant. This integrates around the circuit in Eq. (A3.2)to the circulation:

Figure A39 Flow past an aerofoil at a small angle of attack a inviscid - фото 422 Figure A39 Flow past an aerofoil at a small angle of attack a inviscid - фото 423

Figure A3.9 Flow past an aerofoil at a small angle of attack: (a) inviscid flow, (b) circulatory flow, and (c) real flow.

(easily seen for circular circuits defined by constant r, but true for all circuits enclosing the vortex). Hence the section lift/unit span is

Wind Energy Handbook - изображение 424

In the case of streamlined lifting bodies such as aerofoils, the circulation Γ that is fixed by the Kutta–Joukowski condition at the trailing edge can be shown to increase with angle of attack α in proportion to sin α. Although the velocities and pressures above and below the aerofoil at the trailing edge must be the same, the particles that meet there are not the same ones that parted company at the leading edge. The particle that travelled over the aerofoil upper surface, even though a longer distance, normally reaches the trailing edge before the one travelling over the shorter lower surface because its speed‐up by the circulation is proportionately greater.

In the corresponding case of a real viscous flow, the boundary layers separate at the trailing edge as discussed earlier, very closely approximating this condition. Thus, pre‐stall lift on an aerofoil section in real flow is quite accurately predicted by inviscid potential flow analysis. However, inviscid flow analysis does not predict the drag, the inviscid (profile) drag being identically zero because in this case the section of itself generates no wake.

The pressure variation (minus the ambient static pressure of the undisturbed flow) around an aerofoil is shown in Figure A3.10. The upper surface is subject to suction (with the ambient pressure subtracted) and is responsible for most of the lift force. The pressure distribution is calculated without the presence of the boundary layer because the normal pressure difference across the boundary layer is small enough to be neglected. Higher order, more accurate solutions for the pressures and forces may be obtained by taking account of the effect of the slowed velocity in the boundary layer displacing the streamlines of the quasi‐inviscid flow outwards by a small amount like a small thickness addition to the profile.

Figure A310 The pressure distribution around the NACA0012 aerofoil at α 5 - фото 425

Figure A3.10 The pressure distribution around the NACA0012 aerofoil at α = 5° (shown schematically around the aerofoil).

Figure A3.11shows the same distribution with the pressure coefficient ( Wind Energy Handbook - изображение 426) plotted against the chordwise coordinate of the aerofoil profile: the full line shows the pressure distribution if the effects of the boundary layer are ignored, and the dashed line shows the actual distribution.

Figure A311 The pressure distribution around the NACA0012 aerofoil at α 5 - фото 427

Figure A3.11 The pressure distribution around the NACA0012 aerofoil at α =5° (pressure coefficient C Pvs x/c).

The effect of the boundary layer is to modify the pressure distribution at the rear of the aerofoil such that lower pressure occurs there than if there is no boundary layer. There is no stagnation pressure at the trailing edge, where the pressure tends to be much closer to ambient. The boundary‐layer‐modified pressure distribution gives rise to pressure drag that is added to the skin friction drag, also caused by the boundary layer.

A3.6 The stalled aerofoil

If the angle of attack exceeds a certain critical value (typically 10° to 16°, depending on the Re ), separation of the boundary layer on the ‘suction’ (or upper) surface takes place. A wake forms above the aerofoil starting from this separation ( Figure A3.12), and the circulation and hence the lift are reduced and the drag increased. The flow past the aerofoil has then stalled. A flat plate at an angle of attack will also behave like an aerofoil and develop circulation and lift but will stall at a very low angle of attack because of the sharp leading edge. Cambering (or curving) the plate will increase the angle of attack for stall onset, but a much greater improvement can be obtained by giving thickness to the aerofoil together with a suitably rounded leading edge.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x