Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.19.3 Self‐induced blade noise

Self‐induced aerodynamic noise arises from a number of causes: (i) interaction of the blade turbulent boundary layers with the trailing edge, (ii) noise due to locally separated flow, (iii) noise due to the vortex wake, usually due to and from a blunt trailing edge but at low Reynolds numbers can alternatively be laminar wake instability, and (iv) noise due to the blade‐tip vortex.

3.19.4 Interaction between turbulent boundary layers on the blade and the trailing edge

Interaction of turbulent eddies in the blade boundary layer with the trailing edge [i.e. (i) in the previous section] is usually regarded as the most important noise source, and efforts are continuing to design blades to minimise it. Modelling techniques have been developed to predict the aero‐acoustic radiation from this source; see Brooks et al. (1989) and Zhu et al. (2005). Two main methods of reducing the intensity have been considered:

1 Blade profile design to reduce the thickness of the suction surface boundary layer (which, being the thicker of the two, therefore has the larger turbulent eddy scales as well as the greater source layer thickness) at the trailing edge. Some progress has been achieved in reducing this boundary layer's thickness by reducing the strength of the suction pressure on the suction surface while compensating to maintain overall lift and particularly lift/drag ratio by increasing the positive pressure downstream of stagnation on the pressure surface. This method, perhaps because of the constraints involved, has yielded moderate noise reductions of up to about 2 dB. Families of low noise aerofoils have been designed, such as the DTU‐LNxxx series shown in Figure 3.78a– c; see also Wang et al. (2015).

2 Making the trailing edge serrated (see Figure 3.79) or by adding flexible ‘brushes’ to it. This concept is based on Howe's (1991) analysis of the reduction in radiation efficiency of a trailing edge as a result of making it serrated in plan. Although Howe's theory doesn't give a very good prediction of the actual sound power reduction that is achieved, nonetheless the technique has been shown to give useful noise reductions of more than 3 db. Serrations of this type appear to be possible without significantly affecting the section lift or drag. They may be part of the outer blade design or have been sometimes in the form of an add‐on to existing blades. A good description is given in Zhu et al. (2016).

3.19.5 Other blade noise sources

The remaining three sources of aerodynamic blade self‐noise are usually less significant than i) above involving interaction between the turbulent boundary layers and a sharp trailing edge:

ii) Noise due to locally separated flow is more usual from the inner blade where intensities are limited by low relative velocities. Significant separation is unusual on the outer blade under low to moderate wind conditions for which blade noise may be a concern.

iii) Noise due vortex shedding from the trailing edge of the blade can be of concern. It should be considered only if the outer blade aerofoil section has a particularly blunt trailing edge. If it occurs, it can be more irritating than purely broadband noise because of the strong tonal content.

iv) Tip vortex noise does not seem to be particularly well understood but can be minimised by a well‐designed tip with appropriate rounding.

Figure 378 Low noise aerofoil family a DTULN1xx b DTULN2xx and c - фото 408

Figure 3.78 Low noise aerofoil family: (a) DTU‐LN1xx, (b) DTU‐LN2xx, and (c) DTU‐LN3xx.

Source: From Zhu, Shen, and Soerensen (2016).

Figure 379 Diagram of serrated trailing edge for reduction of TE noise - фото 409

Figure 3.79 Diagram of serrated trailing edge for reduction of TE noise.

3.19.6 Summary

The effect of noise on adjacent populations is the reason for concern about noise. Mainly in the case of wind turbines this concerns human populations. However, underwater propagation of sound from offshore wind turbines may need to be kept in mind with respect to marine animals but is very unlikely to be as significant as it is for tidal stream turbines. Noise effect on adjacent populations is normally defined by a geographical noise footprint based on contours of perceived noise (PNdB). In drawing these up account has to be taken of the different efficiencies of propagation of noise at different frequencies, in particular that low frequency noise travels much farther than high frequencies, and of the non‐uniform sensitivity of the ear over the audible frequency range. Because of the major issues surrounding aircraft noise and the siting of runways, there is a great deal of research published on this.

This Section 3.19on aerodynamic noise has only attempted to summarise the main issues and research into the subject where it concerns noise arising from wind turbine rotor blades. In practice this is the most important source of noise from a wind turbine, and because noise has become one of the major planning constraints for siting wind turbines, it is likely that the industry will continue considerable effort into the development of methods to suppress it. An excellent reference on the theories describing aerodynamic noise and the sources, radiation, and propagation of sound is the book by Richards and Mead, Noise and Acoustic Fatigue in Aeronautics (1968).

References

1 Abbott, I.H. and von Doenhoff, A.E. (1959). Theory of Wing Sections. USA: Dover Books.

2 Amiet, R. (1975). Acoustic radiation from an aerofoil in a turbulent stream. J. Sound Vib. 41: 407–420.

3 Argyle, P., Watson, S., Montavon, C. et al. (2018). Modelling turbulence intensity within a large offshore wind‐farm. Wind Energy Res. https://doi.org/10.1002/we.2257.

4 Betz, A. (1919). Schraubenpropeller mit geringstem Energieverlust. Delft: Gottinger Nachrichten.

5 Betz, A. (1920). Das Maximum der theoretisch moglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift fur das gesamte Turbinenwesen 26: 307–309.

6 Brooks, T.F., Pope, D.S., and Marcolini, M.A. (1989). Airfoil self‐noise and prediction. NASA Ref. Pub. 1218.

7 Castro, I.P. (1971). Wake characteristics of two‐dimensional perforated plates normal to an airstream. J. Fluid Mech. 46: 599–609.

8 Conway, J.T. (1998). Exact actuator disc solutions for non‐uniform heavy loading and slipstream contraction. J. Fluid Mech. 365: 235–267.

9 De Vaal, J.B., Hansen, M.O.L., and Moan, T. (2014). Effect of wind turbine surge motion on rotor thrust and induced velocity. Wind Energy 17: 105–121. https://doi.org/10.1002/we.1562.

10 Drela, M. (1989). X‐Foil: an analysis and design system for low Reynolds number Airfoils. In: Low Reynolds Number Aerodynamics, vol. 54 (ed. T.J. Mueller), 1–12. Springer‐Verlag Lec. Notes in Eng.

11 Eppler, R. (1990). Airfoil Design and Data. Berlin: Springer‐Verlag.

12 Eppler, R. (1993). Airfoil Program System user's guide.

13 Fugslang, P. and Bak, C. (2004). Development of the Risø wind turbine airfoils. Wind Energy 7: 145–162.

14 Gault, D.E. (1957). A correlation of low speed airfoil section stalling characteristics with Reynolds number and airfoil geometry. NACA Tech. Note 3963.

15 Giguere, P., Dumas, G., and Lemay, J. (1997). Gurney flap scaling for optimum lift‐to‐drag ratio. AIAA J. 35: 1888–1890.

16 Glauert, H.( 1926). The analysis of experimental results in the windmill brake and vortex ring states of an airscrew. ARC R&M No. 1026.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x