Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

It is important to note that tip‐loss factors should only be applied in methods that assume disc‐type actuators (i.e. azimuthally uniform), such as the BEM method, and not, for example, to the line actuator method because methods such as this that compute individual blades and the velocities induced at them already incorporate the tip effect.

Figure 330 Spanwise variation of power extraction in the presence of tiploss - фото 297

Figure 3.30 Spanwise variation of power extraction in the presence of tip‐loss for a blade with uniform circulation on a three blade turbine operating at a tip speed ratio of 6.

The results from Eq. (3.79)with and without this tip‐loss factor are plotted in Figure 3.30and clearly show the effect of tip‐loss on power. Equation (3.78)) has assumed that картинка 298uniformly over the whole disc, but applying the tip‐loss factor means recognising that картинка 299cannot be uniform radially. The tip‐loss results from the tip vortices, which generate the induction factor a (effectively the induced drag). It is important to note that there is no additional effective drag associated with tip‐loss.

If the circulation varies along the blade span, vorticity is shed into the wake in a continuous fashion from the trailing edge of all sections where the spanwise (radial) gradient of circulation is non‐zero.

Therefore, each blade sheds a helicoidal sheet of vorticity, as shown in Figure 3.31, rather than a single helical vortex, as shown in Figure 3.27. The helicoidal sheets convect with the wake velocity and so there can be no flow across the sheets, which can therefore be regarded as impermeable. The intensity of the vortex sheets is equal to the rate of change of bound circulation along the blade span and so usually increases rapidly towards the blade tips. There is flow around the blade tips because of the pressure difference between the blade surfaces, which means that on the upwind surface of the blades the flow moves towards the tips and on the downwind surface the flow moves towards the root. The flows from either surface leaving the trailing edge of a blade will not be parallel to one another and will form a surface of discontinuity of velocity in a radial sense within the wake; the axial velocity components will be equal. The surface of discontinuity is called a vortex sheet . A similar phenomenon occurs with aircraft wings, and a textbook of aircraft aerodynamics will explain it in greater detail.

The azimuthally averaged value of картинка 300can be expressed as a b(r). f (r), where f ( r ) is known as the tip‐loss factor , has a value of unity inboard, and falls to zero at the edge of the rotor disc.

In the application of the BEM theory, it is argued that the rate of change of axial momentum is determined by the azimuthally averaged value of the axial flow induction factor, whereas the blade forces are determined by the value of the flow factor that the blade element ‘senses’. This needs careful interpretation, as discussed in Section 3.9.2.

Figure 331 A discretised helicoidal vortex sheet wake for a two bladed rotor - фото 301

Figure 3.31 A (discretised) helicoidal vortex sheet wake for a two bladed rotor whose blades have radially varying circulation.

The mass flow rate through an annulus = ρ U ∞(1 – картинка 302(r)).2 π rδr.

The azimuthally averaged overall change of axial velocity = 2 картинка 303(r).U ∞.

The rate of change of axial momentum = 4 πρ U ∞ 2(1 – Wind Energy Handbook - изображение 304(r)). Wind Energy Handbook - изображение 305(r) δ r.

The blade element forces are Wind Energy Handbook - изображение 306and Wind Energy Handbook - изображение 307, where W and C lare determined using a b(r).

The torque caused by the rotation of the wake is also calculated using an azimuthally averaged value of the tangential flow induction factor 2 картинка 308(r) with tip‐loss similarly applied for the value at a blade because both induction velocities are induced by the same distribution of shed vorticity.

3.9.3 Prandtl's approximation for the tip‐loss factor

The function for the tip‐loss factor f ( r ) is shown in Figure 3.29for a blade with uniform circulation operating at a tip speed ratio of 6 and is not readily obtained by analytical means for any desired tip speed ratio. Sidney Goldstein (1929) did analyse the tip‐loss problem for application to propellers and achieved a solution in terms of Bessel functions, but neither that nor the vortex method with the Biot–Savart solution used above is suitable for inclusion in the BEM theory. Fortunately, in 1919, Ludwig Prandtl, reported by Betz (1919), had already developed an ingenious approximate solution that does yield a relatively simple analytical formula for the tip‐loss function.

Prandtl's approximation was inspired by considering that the vortex sheets could be replaced by material sheets, which, provided they move with the velocity dictated by the wake, would have no effect upon the wake flow. The theory applies only to the developed wake. To simplify his analysis Prandtl replaced the helicoidal sheets with a succession of discs, moving with the uniform, central wake velocity U ∞(1 − a ) and separated by the same distance as the normal distance between the vortex sheets. Conceptually, the discs, travelling axially with velocity U ∞(1 − a ), would encounter the unattenuated free‐stream velocity U ∞at their outer edges. The fast flowing free‐stream air would tend to weave in and out between successive discs. The wider apart successive discs the deeper, radially, the free‐stream air would penetrate. Taking any line parallel to the rotor axis at a radius r , somewhat smaller than the wake radius R w(∼ rotor radius R), the average axial velocity along that line would be greater than U ∞(1 − a ) and less than U ∞. Let the average velocity be U ∞(1 − af ( r )), where f ( r ) is the tip‐loss function, has a value less than unity and falls to zero at the wake boundary. At a distance from the wake edge the free stream fails to penetrate, and there is little or no difference between the wake‐induced velocity and the velocity of the discs, i.e. f ( r ) = 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x