Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The power coefficient for an optimised rotor, operating at the design tip speed ratio, without drag and tip‐losses is equal to the Lanchester–Betz limit 0.593, but with tip‐loss there is obviously a reduced optimum power coefficient. Equation (3.20)determines the power coefficient; see Figure 3.39:

(3.93) for which a and a are obtained from Eqs 389and 390 This differs from - фото 347

for which a ′and a are obtained from Eqs. (3.89)and (3.90). This differs from the result given by Eq. (3.20)by the term a′ / f in the denominator, which is very small except close to the root at low tip speed ratio.

Figure 339 Spanwise variation of power extraction in the presence of tiploss - фото 348

Figure 3.39 Spanwise variation of power extraction in the presence of tip‐loss for three blades with uniform circulation and of optimised design for a tip speed ratio of 6.

Figure 340 The variation of maximum C Pwith design λ for various liftdrag - фото 349

Figure 3.40 The variation of maximum C Pwith design λ for various lift/drag ratios and including tip‐losses for a three bladed rotor.

The maximum power coefficient that can be achieved in the presence of both drag and tip‐loss is significantly less than the Betz limit at all tip speed ratios. As is shown in Figure 3.40, drag reduces the power coefficient at high tip speed ratios, but the effect of tip‐loss is most significant at low tip speed ratios because the pitch of the helicoidal vortex sheets is larger.

An alternative formulation for incorporating tip‐loss effect is to assume that tip‐loss effect may be applied to correct the blade section forces directly ensuring that they fall to zero at the blade root and tip. Thus the tip‐loss only appears as a factor f multiplying the right hand sides of Eqs. (3.48)and (3.49), which predict δ T and δ Q in terms of the momentum losses in the wake; see, for example, Wilson et al. (1974) and Jamieson (2018). This formulation if used simplifies the foregoing analysis of power coefficient because f only appears as a factor multiplying the expression for C P.

But in the following analysis, we will continue to follow the method of applying the tip‐loss factor derived in Section 3.9.2.

3.9.6 Incorporation of tip‐loss for non‐optimal operation

The BEM Eqs. (3.54a)and (3.55)are used to determine the flow induction factors for non‐optimal operation. With tip‐loss included the BEM equations have to be modified. The necessary modification depends upon whether the azimuthally averaged values of the flow factors are to be the determined or the maximum (local to a blade element) values. If the former alternative is chosen, then, in the momentum terms, the averaged flow factors a and a ′remain unmodified, but in the blade element terms, the flow factors must appear as the average values divided by the tip‐loss factor. Choosing to determine the maximum values of the flow factors, i.e. a band a b ′, means that they are not modified in the blade element terms but are multiplied by the tip‐loss factor in the momentum terms. The former choice allows the simpler modification of Eqs. (3.54a)and (3.55):

(3.54c) 355a where the flow factor values determined are the averaged values a and - фото 350

(3.55a) where the flow factor values determined are the averaged values a and a - фото 351

where the flow factor values determined are the averaged values a and a ′.

There remains the problem of the breakdown of the momentum theory when wake mixing occurs. The helicoidal vortex structure may not exist, and so Prandtl's approximation is less physically appropriate. Nevertheless, due to the finite length of the blades and radius of the vortex wake, the application of a tip‐loss factor is necessary. Prandtl's approximation is the only practical method available and so is commonly used. In view of the manner in which the experimental results of Figure 3.16were gathered, it is the average value of a that should determine at which stage the momentum theory breaks down.

3.9.7 Radial effects and an alternative explanation for tip‐loss

The flow approaching the rotor is expanding because it is slowing down and so is not axial, that is, it is not parallel to the rotation axis or the undisturbed flow direction. Consequently, there is a radial flow velocity component at the upwind side of the rotor that arises because there is a radial pressure gradient with lower pressure in the tip region than in the inner region. The change of radial momentum at a point on the rotor disc is approximately balanced by the equal and opposite radial momentum at the diametrically opposite point. The magnitude of the radial velocity increases with radius, and so its effects will be greatest at the tip region. The kinetic energy associated with the radial flow does not directly affect the energy capture because it does not influence the aerodynamic force on the blade.

At the blade tip the blade chord length becomes zero (usually but not always in a gradual fashion) and so must also the axial force exerted on the air flow beyond the blade tip that bypasses the rotor. The idealised actuator disc theory predicts a logarithmically singular radial velocity at the tip. This is not possible, and the pressure difference across the disc must fall continuously radially over a small tip region to zero at the tip.

Both a and ψ , which is the angle of the resultant flow to the axial direction at the rotor plane, will vary radially and will change according to how the circulation on the disc varies radially. Disc circulation, or the bound vorticity on the disc, must also rise and fall from blade root to blade tip, as shown in Figure 3.41.

Figure 341 The variation of circulation along the length of a blade Using - фото 352

Figure 3.41 The variation of circulation along the length of a blade.

Using just the momentum theory, it is not possible to determine the manner of the variation of a and ψ , but it is clear that the integration with respect to radius r of Eq. (3.93)with (3.89)would result in a value for the optimised power coefficient that would be less than the Betz limit.

Throughout the BEM analysis, it is assumed implicitly that the swirl component generated in the wake of the rotor is sufficiently small that its influence on the pressure field may be ignored and specifically that the pressure far downstream in the wake where the momentum balance is calculated is uniform and ambient. However, as discussed earlier at the end of Section 3.3.2, under lower tip speed ratio conditions, typically within streamtubes that pass close to the blade roots so that the local speed ratio λ = Ω r/U ∞< 2, this is increasingly untrue. However, there is not as yet any fully agreed analysis for this effect except that it may offer the possibility of achieving local power coefficients in excess of the Betz limit. In practical terms the possible increase in total rotor power is unlikely to be very significant.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x