Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 335 Spanwise variation of combined tiproot loss factor for a three - фото 324

Figure 3.35 Spanwise variation of combined tip/root loss factor for a three blade turbine optimised for a tip speed ratio of 6 and with a blade root at 20% span.

If μ Ris the normalised root radius, then the root loss factor can be determined by modifying the tip‐loss factor of Eq. (3.82):

(3.84) Wind Energy Handbook - изображение 325

If Eq. (3.82)is now termed f T( r ) the complete tip/root loss factor is

(3.85) Wind Energy Handbook - изображение 326

3.9.5 Effect of tip‐loss on optimum blade design and power

With no tip‐loss the optimum axial flow induction factor is uniformly 1/3 over the whole swept rotor. The presence of tip‐loss changes the optimum value of the average value of a , which reduces to zero at the edge of the wake but local to the blade tends to increase in the tip region.

For the analysis involving induction factors from here on in this chapter, only the azimuthal averages and the local values at the blade are required so it is convenient to use a ( r ) and a′(r) to mean azimuthal averages at radius r with a b= картинка 327and a ′ b= картинка 328for the local values at the blade, thus avoiding the need for the overbar and subscript b notation in the algebraic expressions. The inflow angle ϕ at the blade is from Eq. (3.62):

(3.86) but Eq 361derives tan ϕ from the ratio of the nondimensional rate of - фото 329

but Eq. (3.61)derives tan ϕ from the ratio of the non‐dimensional rate of change of angular momentum to the non‐dimensional rate of change of axial momentum, which is not changed because it deals with the average flow through the disc and so uses average values. If drag is ignored for the present, Eq. (3.62)becomes

(3.87) Hence which becomes 388 A great simp - фото 330

Hence

which becomes 388 A great simplification can be made to Eq 388by - фото 331

which becomes

(3.88) A great simplification can be made to Eq 388by ignoring the first term - фото 332

A great simplification can be made to Eq. (3.88)by ignoring the first term because, clearly, it disappears for much of the blade, where f = 1, and for the tip region the value of a ′2is very small. For tip speed ratios greater than 3, neglecting the first term makes negligible difference to the result:

(3.89) Wind Energy Handbook - изображение 333

As before, Eq. (3.60)still applies, Wind Energy Handbook - изображение 334

From Eq. (3.89), Consequently which combined with Eq 389 gives - фото 335

Consequently,

which combined with Eq 389 gives so 390 - фото 336

which, combined with Eq. (3.89), gives

so 390 The radial variation of the average value of a as given by Eq - фото 337

so

(3.90) The radial variation of the average value of a as given by Eq 390 and - фото 338

The radial variation of the average value of a , as given by Eq. (3.90), and the value local to the blade is shown in Figure 336 An exact solution would also have the local induced - фото 339is shown in Figure 3.36. An exact solution would also have the local induced velocity falling to zero at the blade tip.

Figure 336 Axial flow factor variation with radius for a three blade turbine - фото 340

Figure 3.36 Axial flow factor variation with radius for a three blade turbine optimised for a tip speed ratio of 6.

Clearly, the required blade design for optimal operation would be a little different to that which corresponds to the Prandtl tip‐loss factor because a b= картинка 341; the local flow factor does not fall to zero at the blade tip. The use of the Prandtl tip‐loss factor leads to an approximation, but that was recognised from the outset.

The blade design, which gives optimum power output, can now be determined by adapting Eqs. (3.70)and (3.71), noting that the left hand side of Eq. (3.70)refers to a local inflow angle at the blade, hence the factor becomes ( 1 – a/f ):

Introducing Eq 389gives 391 The blade geometry parameter given by Eq - фото 342

Introducing Eq. (3.89)gives

(3.91) The blade geometry parameter given by Eq 391is shown in Figure 337compared - фото 343

The blade geometry parameter given by Eq. (3.91)is shown in Figure 3.37compared with the design that excludes tip‐loss. As shown, only in the tip region is there any difference between the two designs.

Similarly, the inflow angle distribution, shown in Figure 3.38, can be determined by suitably modifying Eq. (3.73):

(3.92) Again the effects of tiploss are confined to the blade tip Figure 337 - фото 344

Again, the effects of tip‐loss are confined to the blade tip.

Figure 337 Variation of blade geometry parameter with local speed ratio with - фото 345

Figure 3.37 Variation of blade geometry parameter with local speed ratio, with and without tip‐loss for a three blade rotor with a design tip speed ratio of 6.

Figure 338 Variation of inflow angle with local speed ratio with and without - фото 346

Figure 3.38 Variation of inflow angle with local speed ratio, with and without tip‐loss for a three blade rotor with a design tip speed ratio of 6.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x