Nikolaos Limnios - Queueing Theory 1

Здесь есть возможность читать онлайн «Nikolaos Limnios - Queueing Theory 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Queueing Theory 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Queueing Theory 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. The book also analyzes transient behavior of infinite-server queueing models with a mixed arrival process, the strong stability of queueing systems and networks, and applications of fast simulation methods for solving high-dimension combinatorial problems.

Queueing Theory 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Queueing Theory 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1) if then E(X(b)) will be decreasing as b increases;

2) if then E(X(b)) will be increasing as b increases.

The first part of proposition 1.3 is straightforward in that an increase in the service rate reduces the arrival, thereby reducing the traffic intensity and decreasing the expected number in the system. However, an increase to the service rate could also lead to an increase in the mean number in the system as observed in the second part of the proposition, which can be explained by the rate at which the arrival probability increases compared to the service completion probability ( b ), especially if that rate is high.

1.2.1.3. Special cases

CASE 1 : Consider the case where f ( b ) is a decreasing function of b , say for example a = f ( b ) = 1 – b 2, with the strict condition that f ( b ) = 1 – b 2 < b . For this, we have

In this case as b increases we see that E X b decreases as well This - фото 25

In this case, as b increases we see that E ( X ( b )) decreases as well. This is because the arrival probability decreases at a faster rate than service completion increases, i.e. f′ ( b ) = – 2 b .

REMARK 1.1.– For the case where a = f ( b ) = 1 – b 2, the arrival probability is a decreasing concave function of the service completion probability and the mean number in the system is decreasing in a convex form.

CASE 2 : Next consider the case where f ( b ) is an increasing function of b , say for example a = f ( b ) = b 2, with the strict condition that f ( b ) = b 2 < b . In this case, we have

In this case as b increases we see that E X b increases because the - фото 26

In this case, as b increases we see that E ( X ( b )) increases because the arrival probability increases faster than service completion increases, i.e. f′ ( b ) = 2 b .

REMARK 1.2.– For the case where a = f ( b ) = b 2, with arrival probability increasing in a convex form of the service completion probability, the mean number in the system increases in a convex form as well .

CASE 3 : Let us consider another case where f ( b ) is a linear decreasing function of b, say for example a = f ( b ) = 1 – b , with the strict condition that 1 – b < b . In this case, we have

In this case as b increases we see that decreases because the arrival - фото 27

In this case, as b increases we see that decreases because the arrival probability is decreasing in the same rate as the service completion rate increases, i.e. картинка 28

REMARK 1.3.– However, for the case where a= f(b) = 1-b, the arrival probability decreasing in a linear form of the service completion probability, the mean number in the system decreases in a strict convex form .

We summarize the results of the mean number in the system for the three cases in Table 1.1, with **** representing infeasible situations because the traffic intensity is greater than 1.

1.2.2. Service times dependent on interarrival times

The case of the Geo/Geo/1 system in which the service times depend on the interarrival times can be studied using the same idea and techniques as in section 1.2.1. If we define the arrival probability as a and the service time completion probability as b = g ( a ), it is straightforward to extend the ideas of that section directly. The queueing performance measures such as the mean number in the system, which we now define as E ( X ( a )) can be written as

and the stability condition given as a g a Since the procedures will be - фото 29

and the stability condition given as a < g ( a ). Since the procedures will be the same, they will not be discussed in this chapter.

Table 1.1. Mean number in system for the three cases

b EX1 EX2 EX3
0.10 **** 0.1100 ****
0.20 **** 0.2400 ****
0.30 **** 0.3900 ****
0.40 **** 0.5600 ****
0.50 **** 0.7500 ****
0.60 **** 0.9600 1.2000
0.70 1.3153 1.1900 0.5250
0.75 0.7875 1.3125 0.3750
0.80 0.5236 1.4400 0.2667
0.85 0.3502 1.5725 0.1821
0.90 0.2168 1.7100 0.1125
0.95 0.1032 1.8525 0.0528

1.3. The PH/PH/1 case

In this section, the idea of Geo/Geo/1 system with interdependent interarrival and service times is generalized to the case of the PH/PH/1 system. However, first let us give a very brief review of the discrete PH distribution.

1.3.1. A review of discrete PH distribution

Consider a discrete time absorbing Markov chain with state space Xn , n = 0, 1, 2, ∙ ∙ ∙ , with Xn = 0, 1, 2, ∙ ∙ ∙ , N , where state 0 is an absorbing state. The transition matrix of this chain can be written as

Queueing Theory 1 - изображение 30

where Queueing Theory 1 - изображение 31with Queueing Theory 1 - изображение 32for at least one i. Also define t = 1 – T 1, where 1is a column of ones.

There is a discrete random variable Y , which is said to have a PH distribution ( α,T ) if one can write

Several wellknown discrete distributions can be represented as PH - фото 33 Several wellknown discrete distributions can be represented as PH - фото 34

Several well-known discrete distributions can be represented as PH distributions. Examples include the geometric distribution, the negative binomial distribution, to name just a few. In addition, most discrete distributions can be reasonably approximated by discrete PH distribution (see Mészáros et al . 2014 and references therein).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Queueing Theory 1»

Представляем Вашему вниманию похожие книги на «Queueing Theory 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Queueing Theory 1»

Обсуждение, отзывы о книге «Queueing Theory 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x