Nikolaos Limnios - Queueing Theory 1

Здесь есть возможность читать онлайн «Nikolaos Limnios - Queueing Theory 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Queueing Theory 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Queueing Theory 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The aim of this book is to reflect the current cutting-edge thinking and established practices in the investigation of queueing systems and networks. The book also analyzes transient behavior of infinite-server queueing models with a mixed arrival process, the strong stability of queueing systems and networks, and applications of fast simulation methods for solving high-dimension combinatorial problems.

Queueing Theory 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Queueing Theory 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

One of the most recent works on this subject is by Iyer and Manjunanth (2006) who also studied the interarrival and service times of queue by using mixtures of bivariates. Panda et al . (2017), in a work similar to the one by Iyer and Manunanth (2006), studied queues in which batch interarrival and service times are correlated by representing them with a bivariate mixture of rational ( R ) distributions.

Generally, most of the reported works focus on proportional relationships between interarrival times and service times. This is quite limiting. In this chapter, this aspect is relaxed, and the interdependence between the interarrival times and services is captured in a one-way dependence of interarrival time on service time and later in a two-way dependence. However, that dependence is allowed to be general. In the one-way case, we start by considering the Geo/Geo/1 system in which the arrival probability depends on service completion probability. Specifically in the general one-way case, we assume that there is a set of several, but finite, number of interarrival times. At the end of a service completion, the next interarrival time of a user is selected based on the service time. Even though the distributions of the interarrival times and service times will be general, we will be using the discrete phase type distribution to represent them based on the fact any discrete general distributions, with finite support, can be represented by a Markov chain (Alfa 2004).

1.2. The Geo/Geo/1 case

Consider the simple Geo/Geo/1 system where the probability of arrival is a and of service completion is b . Let Xn ( a, b ), n = 0,1,2, ∙∙∙ be the number in the system at time n for a specified pair ( a, b ), with for the case of a stable system Based on the results in Alfa 2016 the - фото 7for the case of a stable system. Based on the results in Alfa (2016), the associated discrete time Markov chain (DTMC) has the transition matrix P written as

Queueing Theory 1 - изображение 8

For a stable system with Queueing Theory 1 - изображение 9, we have

and where is the expected value of - фото 10

and

where is the expected value of Next we consider the cases of - фото 11

where is the expected value of Next we consider the cases of a f b We - фото 12is the expected value of Queueing Theory 1 - изображение 13.

Next we consider the cases of a = f ( b ). We require that the following condition applies all the time in this section:

[1.1] Queueing Theory 1 - изображение 14

We consider two main cases: one when f (∙) is a decreasing function and the second one when it is an increasing function.

1.2.1. Arrival probability as a function of service completion probability

When we consider the case where a = f ( b ), we have

and where Next we study the behavior of this syst - фото 15

and

where Next we study the behavior of this system as a function of b - фото 16

where Next we study the behavior of this system as a function of b 1211 - фото 17

Next, we study the behavior of this system as a function of b .

1.2.1.1. Consider x 0( b )

By differentiating x 0( b ) with respect to b , we have

PROPOSITION 11 By studying the derivative of x 0b wrt b we observe 1 - фото 18

PROPOSITION 1.1.– By studying the derivative of x 0(b) w.r.t. b, we observe

1) if f’(b) is negative, then an increase in b leads to an increase in the probability that the system is empty;

2) if f’(b) is positive, then the probability that the system is empty could be increasing or decreasing, depending on whether respectively. Hence, an increase in the arrival rate as a function of the service rate does not necessarily mean a decrease in the emptiness probability.

We obtain additional information by considering the rate of increase in the probability of empty system as a rate of increase in the service completion probability, i.e.

PROPOSITION 12 If f b is convex and f b 0 then x 0 b is - фото 19

PROPOSITION 1.2.– If f ( b ) is convex and f ’( b ) < 0, then x 0( b ) is definitely concave. if f ( b ) is decreasing fast, then x 0(b) is increasing slowly, i.e. f ( b ) decreasing faster than increases. If, however, f ( b ) is convex and then x 0 b is convex 1212 Consider E X b Next let us consider - фото 20then x 0( b ) is convex.

1.2.1.2. Consider E ( X ( b ))

Next let us consider E ( X ( b )). By differentiating E ( X ( b )) w.r.t. b , wehave

Define For a stable system we know that b f b and 1 f b are always - фото 21

Define

For a stable system we know that b f b and 1 f b are always - фото 22

For a stable system, we know that bf ( b ) and 1– f ( b ) are always positive, hence both A ( b ) and B ( b ) are always positive if картинка 23.

We thus have that the behavior of E ( X ( b )) depends entirely on f ’( b ), A ( b ) and B ( b ) and whether картинка 24or not. E ( X ( b )) depends on the sign and values of the first three parameters, and the value of the fourth one.

PROPOSITION 1.3.– For a stable system,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Queueing Theory 1»

Представляем Вашему вниманию похожие книги на «Queueing Theory 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Queueing Theory 1»

Обсуждение, отзывы о книге «Queueing Theory 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x