Machine Learning for Healthcare Applications

Здесь есть возможность читать онлайн «Machine Learning for Healthcare Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning for Healthcare Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning for Healthcare Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment.
Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning.
This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Machine Learning for Healthcare Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning for Healthcare Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. Cheng, C., Wei, X., Jian, Z., Emotion recognition algorithm based on convolution neural network. 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE) , IEEE, pp. 1–5, 2017.

7. Ambler, T., Braeutigam, S., Stins, J., Rose, S., Swithenby, S., Salience and choice: Neural correlates of shopping decisions. Psychol. Marketing , 21, 4, 247–261, 2004.

8. Khushaba, R.N., Greenacre, L., Kodagoda, S., Louviere, J., Burke, S., Dissanayake, G., Choice modeling and the brain: A study on the Electroencephalogram (EEG) of preferences. Expert Syst. Appl. , 39, 16, 12378–12388, 2012.

9. Vecchiato, G., Kong, W., Giulio Maglione, A., Wei, D., Understanding the impact of TV commercials. IEEE Pulse , 3, 3, 3–65, 2012.

10. Baldo, D., Parikh, H., Piu, Y., Müller, K.M., Brain waves predict success of new fashion products: A practical application for the footwear retailing industry. J Creating Value , 1, 1, 61–71, 2015.

11. Guo, G. and Elgendi, M., A new recommender system for 3D e-commerce: An EEG based approach. J. Adv. Manage. Sci. , 1, 1, 61–65, 2013.

12. Murugappan, M., Murugappan, S., Gerard, C., Wireless EEG signals based neuromarketing system using Fast Fourier Transform (FFT). 2014 IEEE 10th International Colloquium on Signal Processing and its Applications , IEEE, pp. 25–30, 2014.

13. Boksem, M.A. and Smidts, A., Brain responses to movie trailers predict individual preferences for movies and their population-wide commercial success. J. Marketing Res. , 52, 4, 482–492, 2015.

14. Soleymani, M., Chanel, G., Kierkels, J.J., Pun, T., Affective ranking of movie scenes using physiological signals and content analysis. Proceedings of the 2nd ACM workshop on Multimedia semantics , pp. 32–39, 2008.

15. Kawasaki, M. and Yamaguchi, Y., Effects of subjective preference of colors on attention-related occipital theta oscillations. NeuroImage , 59, 1, 808–814, 2012.

16. Khushaba, R.N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B.E., Townsend, C., Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. , 40, 9, 3803–3812, 2013.

17. Stickel, C., Fink, J., Holzinger, A., Enhancing universal access–EEG based learnability assessment. International Conference on Universal Access in Human–Computer Interaction , Springer, Berlin, Heidelberg, pp. 813–822, 2007.

18. Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G., Computational sensemaking on examples of knowledge discovery from neuroscience data: Towards enhancing stroke rehabilitation. International Conference on Information Technology in Bio- and Medical Informatics , Springer, Berlin, Heidelberg, pp. 166–168, 2012.

19. Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A., On applying approximate entropy to ECG signals for knowledge discovery on the example of big sensor data. International Conference on Active Media Technology , Springer, Berlin, Heidelberg, pp. 646–657, 2012.

20. Hargittai, S., Savitzky–Golay least-squares polynomial filters in ECG signal processing. Comput. Cardiol. , 2005, 763–766, IEEE, 2005.

21. Gandhi, V., Prasad, G., Coyle, D., Behera, L., McGinnity, T.M., Quantum neural network-based EEG filtering for a brain–computer interface. IEEE Trans. Neural Networks Learn. Syst. , 25, 2, 278–288, 2013.

22. Abd Rahman, F. and Othman, M.F., Real time eye blink artifacts removal in electroencephalogram using Savitzky–Golay referenced adaptive filtering. International Conference for Innovation in Biomedical Engineering and Life Sciences , Springer, Singapore, pp. 68–71, 2015.

23. Awal, M.A., Mostafa, S.S., Ahmad, M., Performance analysis of Savitzky–Golay smoothing filter using ECG signal. Int. J. Comput. Inf. Technol. , 1, 02, 24–29, 2011.

24. Kaur, B., Singh, D., Roy, P.P., A novel framework of EEG-based user identification by analyzing music-listening behavior. Multimedia Tools Appl. , 76, 24, 25581–25602, 2017.

* Corresponding author : satyaranjan.dash@gmail.com

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning for Healthcare Applications»

Представляем Вашему вниманию похожие книги на «Machine Learning for Healthcare Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning for Healthcare Applications»

Обсуждение, отзывы о книге «Machine Learning for Healthcare Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x