Machine Learning for Healthcare Applications

Здесь есть возможность читать онлайн «Machine Learning for Healthcare Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning for Healthcare Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning for Healthcare Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment.
Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning.
This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Machine Learning for Healthcare Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning for Healthcare Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The learning rates were found to be 0.00001 for valence, 0.001 for arousal & a gradient momentum of 0.9. These models resulted in 4.51 & 4.96% improvement in classifying valence and arousal respectively among 2 classes (High/Low) in valence & 3 classes (High/Normal/Low) in arousal. The learning rate is marginally more useful, but dropout probability secures the best classification across levels. They also noted that wrong choice of activation functions especially 1st CNN layer will cause severe defects to models. The models were highly accurate with respect to previous researchers and prove the fact that neural networks are the key for EEG classification of emotions in a step to unlocking the brain.

Hence Deep Neural Networks are used to analyze human emotions and classify them by PSD and frontal asymmetry features. Training model for emotional dataset are created to identify its instances. Emotions are of 2 types—Discrete, classified as a synchronized response in neural anatomy, physiology & morphological expressions and Dimensional, i.e., they can be represented by a collection of small number of underlying effective dimensions, in other words, vectors in a multidimensional space.

The aim of this paper is to identify excitement, meditation, boredom and frustration from the DEAP emotion dataset by a classification algorithm. The Python language is used including libraries like SciKit Learn Toolbox, SciPy and Keras Library. The DEAP dataset contains physiological readings of 32 participants recorded at a sampling rate of 512 Hz with a “bandpass frequency filter” with a range of 4.0 to 45.0 Hz and eliminated EOG artifacts. Power Spectral Density (PSD), based on Fast Fourier Transform, decomposes the data into 4 distinct frequency ranges, i.e., theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz) using the avgpower function available in Python’s Signal Processing toolbox. The left hemisphere of brain has more frequently activation with positive valence and the right hemisphere has negative valence.

Emotion estimation on EEG frontal asymmetry Ramirez et al classified - фото 15

Emotion estimation on EEG frontal asymmetry:

Ramirez et al classified emotional states by computing levels of arousal as - фото 16

“Ramirez et al. classified emotional states by computing levels of arousal as prefrontal cortex and valence levels as below”:

Whenever the arousal was computed as beta to alpha activity ratio in frontal - фото 17

“Whenever the arousal was computed as beta to alpha activity ratio in frontal cortex, valence was computed as relative frontal alpha activity in right lobe compared to left lobe as below”:

A timefrequency transform was used to extract spectral features alpha 811 - фото 18

“A time-frequency transform was used to extract spectral features alpha (8–11 Hz) and beta (12–29 Hz). Lastly Mean absolute error (MAE), Mean squared error (MSE) and Pearson Correlation (Corr) is used.”

By scaling 19 into valence arousal High Low we see that feeling of - фото 19

By scaling (1–9) into valence & arousal (High & Low) we see that feeling of frustration and excitement triggers as high arousal in a low valence area and high valence area respectively whereas meditation and boredom triggers as low arousal in high valence area and in low valence area respectively.

The DNN classifier has 2,184 units with each hidden layer having 60% of its predecessor’s units. Training was done using roughly 10% of the dataset divided into a train set, validation set and a test set. After setting a dropout of 0.2 for input layer & 0.5 for hidden layers, the model recognized arousal & valence with rates of 73.06% (73.14%), 60.7% (62.33%), and 46.69% (45.32%) for 2, 3, and 5 classes, respectively. The kernel-based classifier was observed to have better accuracy compared to other methods like Naïve Bayes and SVM. The result was a set of 2,184 unique features describing EEG activity during each trial. These extracted features were used to train a DNN classifier & random forest classifier. This was exclusively successful for BCI where datasets are huge.

Emotion monitoring using LVQ and EEG is used to identify emotions for the purpose of medical therapy and rehabilitation purposes. [3] proposes a monitoring system for humane emotions in real time through wavelet and “Learning Vector Quantization”. Training data from 10 trials with 10 subjects, “3 classes and 16 segments (equal to 480 sets of data)” is processed within 10 seconds and classified into 4 frequency bands. These bands then become input for LVQ and sort into excited, relaxed or sad emotions. The alpha waves appear frequently when people are relaxed, beta wave occurs when people think, theta wave occurs when people are under stress, tired or sleepy and delta wave occurs when people are in deep sleep. EEG data is captured using an Emotive Insight wireless EEG on 10 participants. They used wireless EEG electrodes on “AF3”, “T7”, “T8” and “AF4” with a 128 Hz sampling frequency to record at morning, noon and night. 1,280 points are recorded in a set, which occurs every 3 min segmented every 10 s. Each participant is analyzed with excited, relaxed or sad states. Using the “LVQ wavelet transform”, EEG was extracted into the required frequencies. “Discrete wavelet transforms (DWT)” again X(n) signal is described as follows:

Known as wavelet base function Approximation signal below is a resulted signal - фото 20

Known as wavelet base function. Approximation signal below is a resulted signal generated from convoluted processes of original signal mapping with high pass filter.

Where x n original signal gn low pass filter coeff hn high - фото 21

Where , x ( n ) = original signal

g(n) = low pass filter coeff

h(n) = high pass filter coeff

K, n = index 1 = till length of signal

Scale function coefficient (Low pass filter)g0 = 1 − 342, g1 = 3 − 342, g2 = 3 + 3, 342, g3 = 1+342

Wavelet function coefficient (High pass filter)h0 = 1 − 342, h1 = − 3 − 342, h2 = 3 + 3, 342, h3 = − 1 + 342

When each input data with class label is known, a supervised version of vector quantization called “Learning Vector quantization” can be used to obtain the class that depends on the Euclidean distance between reference vectors and weights. Each training data’s class was compared based on:

Machine Learning for Healthcare Applications - изображение 22

Following is the series of input identification systems:

As stated The LVS algorithm attempted to correct winning weight Wi with - фото 23

“As stated, The LVS algorithm attempted to correct winning weight Wi with minimum D by shifting the input by the following values:

1 If the input xi and wining wi have the same class label, then move them closer together by ΔWi(j) = B(j)(Xij − Wij).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning for Healthcare Applications»

Представляем Вашему вниманию похожие книги на «Machine Learning for Healthcare Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning for Healthcare Applications»

Обсуждение, отзывы о книге «Machine Learning for Healthcare Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x