Liquid Biofuels

Здесь есть возможность читать онлайн «Liquid Biofuels» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Liquid Biofuels: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Liquid Biofuels»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Compiled by a well-known expert in the field,
provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area.
Written with the objective of offering both theoretical concepts and practical applications of those concepts,
can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization.
The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector.
A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.

Liquid Biofuels — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Liquid Biofuels», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Oil (source) Catalyst Reaction Molar ratio (Methanol to oil) Catalyst loading (wt% or w/w) Reaction temperature (K) Time (min) Ultrasound frequency/power (kHz/W) Yield (%) Reference
Mixed oil feedstock Sulfonated Carbon Transesterification 12.8:1 8.18% 336 60 35/35 93.7 [9]
Erythrina mexicana oil Cobalt (II) 3D MOF Transesterification 10 mL:1gm 25 mg 333 720 40 kHz 80 [62]
Pistacia khinjuk seed oil Sulphated tin oxide impregnated with silicon dioxide Transesterification 13:1 3.5% 338 50 20 kHz 88 [63]
Oleic acid PTA@MIL–53 (Fe) (hetero–polyacid on Fe(III)–based MOF) Esterification 16:1 100 mg 333 15 37/50 96 [64]
Sunflower oil Sono–sulfated zirconia on MCM–41 Transesterification 9:1 5% 333 30 20/90 96.9 [65]
Waste fish oil Sulfonated activated carbon Esterification 14.85:1 11.4% 328 60 20/296 56 [66]
Waste cooking oil Sulfonated carbon catalyst from cyclodextrin Transesterification 16:1 11.5% 390 8.8 25 kHz 90.8 [67, 68]
Palm fatty acid distillate Sulfonated cellulose Transesterification 6:1 3% 333 180 20/120 81.2 [69]
Waste cooking oil Tri–potassium phosphate Transesterification 6:1 3% 323 90 22/375 92 [70]
Crude Jatropha oil carbon–supported heteropoly acid Transesterification 20:1 4% 323 60 20/400 87.33 [71]
Crude Jatropha oil Cesium doped heteropoly acid Transesterification 25:1 3% 327 34 20/400 90.5 [72]

Table 2.1(C) Ultrasound-assisted immobilized enzyme catalysed biodiesel synthesis case studies.

Oil (source) Enzyme Support Molar ratio (alcohol to oil) Enzyme loading (w/w) Reaction temperature (K) Time (min) Ultrasonic frequency/power (kHz/W) Yield (%) Reference
Mixed oil Lipase from Thermomyces lanuginosus Commercially immobilized 7.64:1 3.55% 309 120 35/35 90 [73]
Soybean and Waste frying oil Lipozyme TL-IM, RM-IM Novozym 435 Commercially immobilized 9:1 15% 298 720 40/220 90 [74]
Macauba and Soybean oil Lipase from Candida antarctica Macroporous anionic resin 3:1 20% 343 120 20/40 88 [75]
Canola oil Lipase from Candida rugosa Commercially immobilized 5:1 0.23% 303 90 20/40-200 99 [76]
Waste lard Lipase B from Candida antarctica Commercially immobilized 4:1 6% 323 20 20/500 96.8 [77]
Waste tallow Lipase B from Candida antarctica Commercially immobilized 4:1 6% 323 20 20/500 85.6 [78]
Sunflower oil Lipase from T. lanuginosu Immobilized on silica granules 3:1 3% 313 240 40/120 96 [79]
Macauba coconut oil Lipase B from Candida antarctica Macroporous anionic resin 9:1 20% 338 30 40/132 70 [80]
Soybean oil Lipase B from Candida antarctica Macroporous anionic resin 3:1 20% 343 60 40/132 78 [81]
Waste cooking oil Lipase from T. lanuginose Silica-iron oxide nano- particles 4.34:1 43.6% 303 360 40/150 91 [82]
Soybean oil Lipase from Rhizomucor miehei Macroporous anion resin 3:1 5% 338 240 100 W 90 [83]
Jatropha curcas oil Lipase from E. aerogenes Activated silica 4:1 5% 298 30 24/200 84.5 [84]
Soybean oil Lipase B from Candida antarctica Immobilized on polyacrylic resin 6:1 6% 313 240 40/500 96 [85]

The studies summarized in Table 2.1 (A), (B)and (C)are aimed at addressing the problems associated with the application of heterogeneous catalyst for biodiesel production. In contrast, Table 2.2summarizes the use of HC reactors in process intensification, mostly for homogeneous catalysed processes. As stated previously, the application of heterogeneous catalysts for transesterification reaction makes the reaction mixture become a 3–phase heterogeneous system (solid–liquid–liquid), which has high mass transfer constraints. The conventional mixing and heating method includes hot plates (laboratory scale), oil, or sand baths, and water heated jacketed reactors combined with mechanical mixing are not efficient for improving intermixing of reactants and catalysts, and thus, usually takes longer times to complete the reaction with uneven heat distribution [39, 57]. With utilization of sonication (either in the form acoustic or hydrodynamic), the processes were intensified and resulted in lower requirement of catalyst and solvents with higher conversion in short reaction time [27, 88]. However, the research published in this area revealed that acoustic cavitation was investigated comprehensively compared to HC processes. The bottleneck on the application of HC in heterogeneous catalyzed process is in its working principle.

As the liquid passes through the venturi or orifice or throttled value, the flow regimes of the liquid changes, resulting in loss of pressure across the section. To generate the cavities or tiny bubbles from flowing liquid, the pressure should drop below the vapor pressure of the fluid. Thus, to achieve this, small diameter holes are more preferable, ranging in the zone 0.1 to 3 mm [90, 102]. The application of heterogeneous catalysts in the reaction mixture requires a high flow velocity to suspend the catalyst particles in the reaction mixture. On the other hand, to avoid chocking of catalyst particle over cavitating equipment, either particle size of catalyst should be significantly lower (at least 10 – 50 times) than the hole opening diameter or the hole opening diameter should be enlarged. The former solution will increase the production cost due to an increase in catalyst production cost [11, 40, 91, 103]; on the other hand, the latter solution will affect the working of the reactor. With a given inlet pressure, only mixing can occur in the HC reactor as the pressure drop is insufficient to vaporize the liquid for production of tiny bubbles [88, 104]. Thus, the literature revealed in Table 2.2mostly deals with homogenously catalyzed transesterification process and rarely addressed the heterogeneously catalyzed system for biodiesel production.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Liquid Biofuels»

Представляем Вашему вниманию похожие книги на «Liquid Biofuels» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Liquid Biofuels»

Обсуждение, отзывы о книге «Liquid Biofuels» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x