Ian W. Hamley - Small-Angle Scattering

Здесь есть возможность читать онлайн «Ian W. Hamley - Small-Angle Scattering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Small-Angle Scattering: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Small-Angle Scattering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SMALL-ANGLE SCATTERING
A comprehensive and timely volume covering contemporary research, practical techniques, and theoretical approaches to SAXS and SANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications
Small-Angle Scattering: Theory, Instrumentation, Data, and Applications

Small-Angle Scattering — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Small-Angle Scattering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2 WAVENUMBER AND SCATTERING AMPLITUDE

In a SAS experiment, the intensity of scattered radiation (x‐rays or neutrons) is measured as a function of angle and is presented in terms of wavenumber q . This removes the dependence on wavelength λ which would change the scale in a plot against angle, i.e. SAS data taken at different wavelengths will superpose when plotted against q , this is useful for example on beamlines where data is measured at different wavelengths (this is more common with neutron beamlines). The wavenumber quantity is sometimes denoted Q although in this book q is used consistently. The difference between incident and diffracted wavevectors q= k s− k iand since SmallAngle Scattering - изображение 3, and the scattering angle is defined as 2 θ ( Figure 1.1), the magnitude of the wavevector is given by

(1.1) SmallAngle Scattering - изображение 4

Figure 11 Definition of wavevector qand scattering angle 2 θ related to the - фото 5

Figure 1.1 Definition of wavevector qand scattering angle 2 θ , related to the wavevectors of incident and scattered waves, k iand k f.

In some older texts, related quantities denoted s or S are used (these can correspond to q /2 or q /2π; the definition should be checked). The wavenumber q has SI units of nm −1, although Å −1is commonly employed.

The amplitude of a plane wave scattered by an ensemble of N particles is given by

( 1.2) Here the scattering factors aj are either the q dependent atomic - фото 6

Here, the scattering factors aj are either the ( q ‐dependent) atomic scattering factors f j( q ) ( Section 4.4) for SAXS or the q ‐independent neutron scattering lengths bj for SANS ( Section 5.4).

For a continuous distribution of scattering density, Eq. (1.2)becomes

(1.3) Here Δ ρ r is the excess scattering density above that of the background - фото 7

Here Δ ρ ( r) is the excess scattering density above that of the background (usually solvent) scattering, which is a relative electron density in the case of SAXS or a neutron scattering length density (Eq. (5.11)) in the case of SANS.

1.3 INTENSITY FOR ANISOTROPIC AND ISOTROPIC SYSTEMS AND RELATIONSHIPS TO PAIR DISTANCE DISTRIBUTION AND AUTOCORRELATION FUNCTIONS

1.3.1 General (Anisotropic) Scattering

In the following, notation to indicate that the intensity is ensemble or time‐averaged is not included for convenience (if the system is ergodic, which is often the case apart from certain gels and glasses etc., these two averages are equivalent).

The intensity is defined as

(1.4) SmallAngle Scattering - изображение 8

Thus, using Eq. (1.2), for an ensemble of discrete scattering centres

( 1.5) Whereas for a continuous distribution of scattering density 16 Equation - фото 9

Whereas, for a continuous distribution of scattering density,

( 1.6) Equation 16can also be rewritten in terms of an autocorrelation function - фото 10

Equation (1.6)can also be rewritten in terms of an autocorrelation function (sometimes known as convolution square function) writing r′ − r″ = r

(1.7) Then 18 The autocorrelation function has the physical meaning of the - фото 11

Then

( 1.8) The autocorrelation function has the physical meaning of the overlap between a - фото 12

The autocorrelation function has the physical meaning of the overlap between a particle and its ‘ghost particle’ displaced by r( Figure 1.2). This function is the continuous version of the Patterson function familiar from crystallography.

Figure 12 Ghost particle construction The overlap volume shaded is the - фото 13

Figure 1.2 Ghost particle construction. The overlap volume (shaded) is the autocorrelation function.

The autocorrelation function for solid geometrical bodies can be calculated analytically. For a sphere of radius R the expression is isotropic and is given by [5–7]

(1.9) This is a smoothly decaying function of r The expression for a cylinder is - фото 14

This is a smoothly decaying function of r . The expression for a cylinder is provided in Ref. [8] and can be calculated for other structures, asymptotic expressions for cylinders and discs are given in Eqs. (1.83)and (1.84).

Equation (1.6)can alternatively be written for uncorrelated scatterers as

( 1.10) 132 Isotropic Scattering Systems For isotropic scattering the scattered - фото 15

1.3.2 Isotropic Scattering Systems

For isotropic scattering the scattered intensity will only be a function of the wavenumber q and an orientational average (indicated by <..> Ω) is performed, i.e. Eq. (1.5)becomes

(1.11) where r jk r j r k The average over all orientations of r jkcan be evaluated - фото 16

where r jk= r j− r k.

The average over all orientations of r jkcan be evaluated as follows

( 1.12) This leads to the Debye equation for scattering from an isotropically averaged - фото 17

This leads to the Debye equation for scattering from an isotropically averaged ensemble:

(1.13) Considering a continuous distribution of scattering density the orientational - фото 18

Considering a continuous distribution of scattering density, the orientational averaging of Eq. (1.12)has to be performed over Δ ρ ( r) since it is a function of r:

( 1.14) The isotropic average of Eq 114leads via Eq 112 to 115 Here D - фото 19

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Small-Angle Scattering»

Представляем Вашему вниманию похожие книги на «Small-Angle Scattering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Small-Angle Scattering»

Обсуждение, отзывы о книге «Small-Angle Scattering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x