Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.2.15) The voltage wave on the lefthand line 1 is obtained by substituting equation - фото 238

The voltage wave on the left‐hand line #1 is obtained by substituting equation (2.2.15)in equation (2.1.79a):

(2.2.16) The line at the righthand side of the current source is an infinite length - фото 239

The line at the right‐hand side of the current source is an infinite length line that supports a traveling wave without any reflection. Therefore, at x = 0, V −= 0 and V += V S. The voltage wave on line #2 at the right‐hand side is

(2.2.17) The method can be easily extended to a multisection line structure For this - фото 240

The method can be easily extended to a multisection line structure. For this purpose, the left‐hand and right‐hand side admittances Y −and Y +are determined at the plane containing the current source.

Series Voltage Source

Figure (2.12a)shows the series‐connected voltage source V Sat x = 0. The location x = 0 is a junction of two transmission lines – line #1 open‐circuited finite‐length line and line #2 infinite length line. The lines at the left‐hand and right‐hand sides of the voltage source can be replaced by the equivalent impedances Z −and Z +, respectively. It is shown in the equivalent circuit, Fig (2.12b). Again, the voltage waves on both lines, excited by a series voltage source, could be determined.

The voltages across loads Z −(Z 1) and Z +(Z 2), shown in Fig (2.12b), are obtained as follows:

(2.2.18) Line 1 is opencircuited and line 2 is of infinite extent Therefore their - фото 241

Line #1 is open‐circuited and line #2 is of infinite extent. Therefore, their input impedances at x = 0 −and x = 0 +are

Figure 212 A series voltage source at the junction of twoline sections 2 - фото 242

Figure 2.12 A series voltage source at the junction of two‐line sections.

(2 2 19) The voltage at x 0 from equations 2218cand 2219is 2220 For a - фото 243

The voltage at x = 0 +from equations (2.2.18c)and (2.2.19)is

(2.2.20) For a lossy transmission line the above equation could be written as follows - фото 244

For a lossy transmission line, the above equation could be written as follows:

(2.1.21) The voltage wave on the infinite extent lossy line 2 is 2222 The voltage - фото 245

The voltage wave on the infinite extent lossy line #2 is

(2.2.22) The voltage at x 0 on the lossless line 1 is 2223 However the - фото 246

The voltage at x = 0 −on the lossless line #1 is

(2.2.23) However the voltage at x 0 on a lossy line 1 is 2224 The voltage - фото 247

However, the voltage at x = 0 −on a lossy line #1 is

(2.2.24) The voltage wave on the opencircuited lossless line 1 is obtained from - фото 248

The voltage wave on the open‐circuited lossless line #1 is obtained from equations (2.2.16)and (2.2.23):

(2.2.25) 23 Nonuniform Transmission Lines The previous sections have presented the - фото 249

2.3 Nonuniform Transmission Lines

The previous sections have presented the voltage and current waves on the uniform transmission line that has no change in the geometry along the direction of propagation. For a uniform line, the relative permittivity and relative permeability also do not change along the line. For such a uniform lossless or low‐loss transmission line, the voltage and current waves travel at a definite velocity from low frequency to high frequency. The uniform transmission line behaves as a low‐pass filter (LPF) section. The propagation constant for such a uniform transmission line is the same at any section of the line. The line also has a unique characteristic impedance that is independent of the location on a line. However, if the geometry of a transmission line or an electrical property of the medium of a line changes in the direction of propagation, such a line is no longer a uniform transmission line. It is a nonuniform transmission line . Its electrical properties, such as the RLCG primary constants, propagation constant, phase velocity, and characteristic impedance, become a function of the space coordinate along the direction of propagation. The characteristic impedance of a nonuniform transmission line changes from one end to another end; therefore, it finds application in the broadband impedance matching [B.9, B.10, B.12]. It is also used for the design of delay equalizers, filters, wave‐shaping circuits, etc. [J.6–J.9]. It is an essential section of the on‐chip measurement system [J.10]. Unlike a uniform transmission line, it shows a cut‐off phenomenon, i.e. the wave propagates on the line only above the cut‐off frequency . Below the cut‐off frequency, the wave only attenuates with distance. Thus, the nonuniform transmission line behaves like a high‐pass filter (HPF) section [J.11–J.13, B.17].

The present section obtains the wave equations for a nonuniform transmission line. However, like the uniform transmission lines, the nonuniform transmission lines do not have closed‐form solutions for the voltage and current waves. The numerical methods have been used to determine the response of an arbitrarily shaped nonuniform transmission line [J.10, J.11]. However, this section discusses only the exponential nonuniform transmission line to understand its characteristics.

2.3.1 Wave Equation for Nonuniform Transmission Line

Figure (2.13)shows a nonuniform transmission line. The line parameters (primary line constants) R(x), L(x), C(x), G(x) are distance‐dependent. It results in the distance‐dependent characteristic impedance, Z 0(x), and propagation constant, γ(x). Using equation (2.1.20), the voltage and current equations for a nonuniform transmission line are written as follows:

Figure 213 Nonuniform transmission line 231 The following expressions - фото 250

Figure 2.13 Nonuniform transmission line.

(2.3.1) The following expressions are obtained on differentiating equation 231awith - фото 251

The following expressions are obtained on differentiating equation (2.3.1a)with x and equation (2.3.1b)with t:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x