Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.3.2) 233 On substituting equations 231band 233in equation 232 - фото 252

(2.3.3) On substituting equations 231band 233in equation 232 234 - фото 253

On substituting equations (2.3.1b)and (2.3.3)in equation (2.3.2):

(2.3.4) This equation has both the voltage and current variables vx t and ix t - фото 254

This equation has both the voltage and current variables v(x, t) and i(x, t). However, most of the transmission lines are low‐loss lines. Thus, using R(x) → 0 G(x) → 0 in equations (2.3.1a)and (2.3.4), the following voltage wave equation is obtained for a lossless nonuniform transmission line:

(2.3.5) Likewise the current wave equation is obtained as 236 If Lx and Cx - фото 255

Likewise, the current wave equation is obtained as,

(2.3.6) If Lx and Cx are not a function of x then equations 235and - фото 256

If L(x) and C(x) are not a function of x, then equations (2.3.5)and (2.3.6)reduce to the familiar wave equations (2.1.24)and (2.1.25)on a uniform transmission line.

For a lossy nonuniform transmission line, it is not possible to get separate voltage and current wave equations in the time domain. However, separate voltage and current wave equations can be obtained in the frequency domain by using the phasor form of voltage and current. The transmission line equations in the phasor form are

(2.3.7) where the line series impedance and shunt admittance pul are given by - фото 257

where the line series impedance and shunt admittance p.u.l . are given by

(2.3.8) The following wave equations for the nonuniform transmission line are obtained - фото 258

The following wave equations for the nonuniform transmission line are obtained:

(2.3.9) 2310 If Zx and Yx are not a function of x the above wave equations - фото 259

(2.3.10) If Zx and Yx are not a function of x the above wave equations reduce to - фото 260

If Z(x) and Y(x) are not a function of x, the above wave equations reduce to wave equation (2.1.37a and b)for a uniform transmission line. For a lossless nonuniform line, the series impedance and shunt admittance per unit length are Z(x) = jωL(x), Y(x) = jωC(x). The voltage wave equation (2.3.9)could be written as

(2.3.11) where positiondependent nominal phase velocity of a nonuniform transmission - фото 261

where position‐dependent nominal phase velocity of a nonuniform transmission line is given by

(2.3.12) It is difficult to get a general solution for the above wave equations - фото 262

It is difficult to get a general solution for the above wave equations. However, under the case of no reflection on a line, and the line with a small fractional change in L(x) and C(x) over a wavelength, Lewis and Wells, and Wohler [B.17, J.11] have given the following solution of wave equation (2.3.11):

(2.3.13) In this expression Z 0x is the nominal characteristic impedance at any - фото 263

In this expression Z 0(x) is the nominal characteristic impedance at any location x on the nonuniform transmission line, whereas characteristic impedance Z 0(0) is the nominal characteristic impedance at x = 0. For a uniform line, the phase velocity v p(x) is constant and Introduction To Modern Planar Transmission Lines - изображение 264. The wave equation (2.3.11)is reduced to the wave equation of a uniform transmission line. The solution (2.3.13)is also reduced to the standard solution, Introduction To Modern Planar Transmission Lines - изображение 265.

Equation (2.3.13)shows that for increasing characteristic impedance Z 0(x) along the line length, the voltage amplitude also increases as the square root of nominal characteristic impedance. Lewis and Wells [B.17] have also given an expression for the reflection coefficient of the nonuniform transmission line terminated in the load Z Lat x = ℓ:

(2.3.14) For a uniform transmission line Z 0x ℓ Z 0 and equation 2314is - фото 266

For a uniform transmission line Z 0(x = ℓ) = Z 0, and equation (2.3.14)is reduced to the nominal reflection coefficient,

(2.3.15) At higher operating frequency ω the reflection coefficient for any - фото 267

At higher operating frequency ω, the reflection coefficient for any termination, given by equation (2.3.14),is also reduced to equation (2.3.15). However, reflection occurs at a lower frequency ω on a nonuniform transmission line, even if the nominal reflection coefficient Γ nom(x = ℓ) zero, i.e. even if the line is matched at the load end. This behavior is different from that of a uniform transmission line.

2.3.2 Lossless Exponential Transmission Line

The general solution of the wave equation for a nonuniform transmission line is not available. However, the closed‐form solution is obtained for an exponential transmission line [J.11, J.13]. This case demonstrates the properties of a nonuniform line. The following exponential variation is assumed for the line inductance and capacitance of a nonuniform transmission line:

(2.3.16) where L 0and C 0are primary line constants at x 0 and p is a parameter - фото 268

where L 0and C 0are primary line constants at x = 0 and p is a parameter controlling the propagation characteristics . The above choice of line inductance and capacitance maintains a constant phase velocity that is independent of the location along the line length. The characteristic impedance of a lossless exponential transmission line changes exponentially along the line length. Its propagation constant is also frequency‐dependent. Therefore, a lossless nonuniform line is dispersive . The nominal characteristic impedance at any location x on the line is

(2.3.17) The parameter p defined below could be determined from the characteristic - фото 269

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x