Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The input impedance of an infinite line at any location x is Z in(x) = Z 0. Thus, a finite line terminated in its characteristic impedance, i.e. Z L = Z 0 behaves as an infinite extent transmission line without any reflection . The characteristic impedance shows a specific feature of a line that is determined by the geometry and physical medium of the line. Once a finite extent line is terminated in any other load impedance, i.e. Z L≠ Z 0, the voltage and current waves are reflected from the load. The wave reflection is expressed by the reflection coefficient , Γ(x). The reflection coefficient is a complex quantity and its phase changes over the length of a line. However, its magnitude remains constant over the length of a lossless line. The interference of the forward‐moving and backward‐moving reflected waves produces the standing wave with maxima and minima of the voltage and current on a line. Figure (2.8c)shows the voltage standing wave. The position and magnitude of the voltage maxima V maxand voltage minima V minare measurable quantities. Their positions are measured from the load end. The reflection coefficient , and also the voltage standing wave ratio , VSWR, i.e. S, is defined using the V maxand V min. The VSWR could be measured with a VSWR meter. Therefore, the reflection on a transmission line is expressed by both the reflection coefficient and the VSWR. The reflection at the input terminal of a line is also expressed as the return‐loss , RL = − 20 log 10|Γ in|. The wave behavior in terms of the reflection parameter is an important quantity in the design of circuits and components in the microwave and RF engineering.

At the load end, the total line voltage is a sum of the forward and reflected waves, and it is equal to the voltage drop V Racross the load impedance Z L. It is shown in Fig (2.8a). To simplify expressions for the line voltage and current, the origin is shifted from the source end to the load end. In that case, expressions for both the line voltage and line current, given by equation (2.1.79), have to be modified for the new distance variable x < 0. Now the source and load are located at x = − ℓ and at x = 0, respectively. For the origin at the load end, the reflected wave V −e (ωt + γx)appears as the “forward‐traveling wave” from load to the source, whereas the wave incident at the load V +e (ωt − γx)appears as the “backward‐traveling” wave. The voltage drop across the load is

(2.1.83) Introduction To Modern Planar Transmission Lines - изображение 162

Keeping in view that the origin of the distance (x = 0) is at the load, the line voltage and current at the load end are written, from equation (2.1.79), as follows:

(2.1.84) The voltage reflection coefficient at the load end is defined as follows - фото 163

The voltage reflection coefficient at the load end is defined as follows:

(2.1.85) The expression to compute the reflection coefficient at the load end is - фото 164

The expression to compute the reflection coefficient at the load end is obtained from the above equations (2.1.83) – (2.1.85): equations:

(2.1.86) The mismatch of a load impedance Z Lwith the characteristic impedance Z 0of a - фото 165

The mismatch of a load impedance Z Lwith the characteristic impedance Z 0of a line is the cause of the reflection at the load end. For the condition Z L= Z 0, the matched load terminated line avoids the reflection on a line, as Γ L= 0. At any distance x, the reflection coefficient is a complex quantity with both the magnitude and phase expressed as follows:

(2.1.87) A lossless line has Γx Γ L ie on a lossless line magnitude of the - фото 166

A lossless line has |Γ(x)| = |Γ L|, i.e. on a lossless line magnitude of the reflection is the same at all locations on a line. However, the lagging phase ϕ changes with distance. It has 180° periodicity, i.e. for an inductive load, the range of phase is 0 < ϕ < π, and a capacitive load has the phase in the range −π < ϕ < 0. Using equation (2.1.79), the line voltage and line current are written in term of the load reflection coefficient:

(2.1.88) For a lossless transmission line the above equations are written as follows - фото 167

For a lossless transmission line, the above equations are written as follows:

(2.1.89) In the above equations the origin is at the load end ie x 0 The maxima - фото 168

In the above equations, the origin is at the load end, i.e. x < 0. The maxima and minima of the voltage and current waves along the line occur due to the phase variation along the line. The voltage maximum occurs at e j(ϕ + 2βx)= + 1. In this case, both the forward and reflected waves are in‐phase. The voltage minimum occurs at e j(ϕ + 2βx)= − 1. In this case, both the forward and reflected waves are out of phase. Finally, the maxima and minima of the voltage on a line are given as follows:

(2.1.90) The reflection coefficient Γx at any location x from the load end is related - фото 169

The reflection coefficient Γ(x) at any location x from the load end is related to the reflection coefficient at the load Γ Lby

(2.1.91) The measurable quantity voltage standing wave ratio VSWR is defined as - фото 170

The measurable quantity voltage standing wave ratio (VSWR) is defined as follows:

(2.1.92) For a lossless line the VSWR is constant along the length of a line - фото 171

For a lossless line, the VSWR is constant along the length of a line . Likewise, the current standing wave ratio is also defined.

The wave reflection also takes place at the sending end when the source impedance Z gis not matched to the characteristic impedance of a line. The reflection coefficient at x = − ℓ, i.e. at the generator (source) end is defined as Γ(x = − ℓ) = Γ g. The voltage and current at the generator end are obtained from equation (2.1.88),

(2.1.93) The amplitude factor V is determined by the reflections at both the source and - фото 172

The amplitude factor V +is determined by the reflections at both the source and load ends.

Figure (2.8b)shows that the port voltage картинка 173and the line current картинка 174, at the input port – aa, are related to the source voltage Introduction To Modern Planar Transmission Lines - изображение 175and its internal impedance Z gby

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x