Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The Hyperbolic Form of a Solution

Figure (2.8a)shows a section of the transmission line having a length ℓ. It is fed by a voltage source, картинка 115with Z ginternal impedance. The general solutions for the line voltage and line current of the wave equation 2137are 2155 At a - фото 116and line current of the wave equation 2137are 2155 At any section on the line its - фото 117of the wave equation (2.1.37)are

(2.1.55) At any section on the line its characteristic impedance Z 0relates the line - фото 118

At any section on the line, its characteristic impedance Z 0relates the line voltage картинка 119and line current картинка 120. So the constants A 2, B 2are related to the constants A 1and B 1. In Fig (2.8a), the point P on the line is located at a distance x from the source end , i.e. at a distance d = (ℓ − x) from the load end . The load is located at d = 0, and the source is located at d = − ℓ. The картинка 121, and картинка 122are the input voltage and the input current at the port‐aa, i.e at x = 0. At x = ℓ, i.e. at the port‐bb, картинка 123and картинка 124are the load end voltage and current, respectively. The ideal voltage generator картинка 125has the internal impedance, Z g= 0, i.e. The phasor form of the line current from equations 2132band 2155a - фото 126. The phasor form of the line current, from equations (2.1.32b)and (2.1.55a), is written below:

Figure 28 Transmission line circuit The distance x is measured from the - фото 127

Figure 2.8 Transmission line circuit. The distance x is measured from the source end; whereas the distance d is measured from the load.

(2.1.56) On comparing the coefficients of sinhγx and coshγx of equations - фото 128

On comparing the coefficients of sinh(γx) and cosh(γx), of equations (2.1.55b)and (2.1.56), two constants A 2and B 2are determined:

(2.1.57) The phasor line voltage and line current are written as follows 2158 The - фото 129

The phasor line voltage and line current are written as follows:

(2.1.58) The constants A 1and B 1are determined by using the boundary conditions at - фото 130

The constants A 1and B 1are determined by using the boundary conditions at input x = 0 and output x = ℓ.

At x = 0, the line input voltage is , giving the value of A1:(2.1.59)

At the receiving end, x = ℓ, the load end voltage and current are

(2.1.60) At x ℓ ie at the receiving end the voltage across load ZL is2161 The - фото 131

At x = ℓ, i.e. at the receiving end, the voltage across load ZL is(2.1.61)

The constant B 1is evaluated on substituting and from equation 2160 in the above equation 2162 O - фото 132and from equation 2160 in the above equation 2162 On substituting - фото 133, from equation (2.1.60), in the above equation:

(2.1.62) On substituting constants A 1and B 1in equation 2158a the expression for - фото 134

On substituting constants A 1and B 1in equation (2.1.58a), the expression for the line voltage at location P, from the source or load end, is

(2.1.63) Similarly the line current at the location P is obtained as follows 2164 - фото 135

Similarly, the line current at the location P is obtained as follows:

(2.1.64) At any location P on the line the load impedance is transformed as input - фото 136

At any location P on the line, the load impedance is transformed as input impedance by the line length d = (ℓ − x):

(2.1.65) Equations 2165abtake care of the losses in a line through the complex - фото 137

Equations (2.1.65a,b)take care of the losses in a line through the complex propagation constant, γ = α + jβ. However, for a lossless line α = 0, γ = jβ and the hyperbolic functions are replaced by the trigonometric functions shown in equation (2.1.65c). It shows the impedance transformation characteristics of d = λ/4 transmission line section.

Equations (2.1.63)and (2.1.64)could be further written in terms of the generator voltage Introduction To Modern Planar Transmission Lines - изображение 138for the case, Z g≠ 0. Figure (2.8b)shows that at the source end x = 0, the load appears as the input impedance Z in. The sending end voltage is obtained as follows:

Introduction To Modern Planar Transmission Lines - изображение 139, where 2166 The line voltage in terms of and Z L is obta - фото 140.

(2.1.66) The line voltage in terms of and Z L is obtained on substituting equation - фото 141

The line voltage, in terms of and Z L is obtained on substituting equation 2166in equation 2163 - фото 142, and Z L, is obtained on substituting equation (2.1.66)in equation (2.1.63):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x