Anand K. Verma - Introduction To Modern Planar Transmission Lines

Здесь есть возможность читать онлайн «Anand K. Verma - Introduction To Modern Planar Transmission Lines» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction To Modern Planar Transmission Lines: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction To Modern Planar Transmission Lines»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

P
rovides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models
Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. 
Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach  Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study 
 is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.

Introduction To Modern Planar Transmission Lines — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction To Modern Planar Transmission Lines», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.1.45) 2146 2147 In the above expression ω - фото 100

(2.1.46) 2147 In the above expression ω 3and ω 4terms are neglected If we - фото 101

(2.1.47) In the above expression ω 3and ω 4terms are neglected If we neglect ω 2terms - фото 102

In the above expression, ω 3and ω 4terms are neglected. If we neglect ω 2terms and also take G = 0 or R = 0, equation (2.1.47)reduces to either equation (2.1.43)or equation (2.1.44), respectively. It is also possible that with the change of frequency, the imaginary part of characteristic impedance changes from a positive to a negative value indicating that the dominant loss can change from the dielectric loss to the conductor loss. For such cases, R and G are usually frequency‐dependent [J.4]. Over a band of frequencies, the imaginary part of the characteristic impedance could be zero leading to

(2.1.48) Introduction To Modern Planar Transmission Lines - изображение 103

It is well known as Heaviside's condition . On meeting it, a lossy line becomes dispersion‐less and the propagation constant β becomes a linear function of frequency, while the attenuation constant becomes frequency‐independent. Following the above equation ( 2.1.48), a lossy line could be made dispersionless by the inductive loading [B.5, B.6].

Propagation Constant

The propagation constant γ of a uniform lossy transmission line is given by equation (2.1.34). It could be approximated under the low‐loss condition. Its real and imaginary parts are separated to get the frequently used approximate expressions for the attenuation and phase constants of a line:

(2.1.49) On neglecting ω 2 ω 3 and ω 4terms the real part of the propagation constant - фото 104

On neglecting ω 2, ω 3, and ω 4terms, the real part of the propagation constant γ provides the attenuation constant, whereas the imaginary part gives the propagation constant:

(2.1.50) The first term of the above equation 2150a shows the conductor loss of a - фото 105

The first term of the above equation (2.1.50a) shows the conductor loss of a line, while the second term shows its dielectric loss. If R and G are frequency‐independent, the attenuation in a line would be frequency‐independent under ωL >> R and ωC >> G conditions. However, usually, R is frequency‐dependent due to the skin effect. In some cases, G could also be frequency‐dependent [B.7].

The dispersive phase constant β is obtained from the imaginary part of equation (2.1.49):

(2.1.51) On neglecting the secondorder term β becomes a linear function of frequency - фото 106

On neglecting the second‐order term, β becomes a linear function of frequency and the line is dispersionless. In that case, its phase velocity is also independent of frequency. A lossy line is dispersive. However, it also becomes dispersionless under the Heaviside's condition – (2.1.48 ). A transmission line, such as a microstrip in the inhomogeneous medium, can have dispersion even without losses.

2.1.6 Wave Equation with Source

In the above discussion, the development of the voltage and current wave equations has ignored the voltage or current source. However, a voltage or current source is always required to launch the voltage and current waves on a line. Therefore, it is appropriate to develop the transmission line equation with a source [B.8]. The consideration of a voltage/current source is important to solve the electromagnetic field problems of the layered medium planar lines, discussed in chapters 14and 16.

Shunt Current Source

Figure (2.7)shows the lumped element model of a transmission line section of length Δx with a shunt current source Introduction To Modern Planar Transmission Lines - изображение 107located at x = x 0. It is expressed through Dirac's delta function as Introduction To Modern Planar Transmission Lines - изображение 108. The lumped line constants R, L, C, G are given for p.u.l .

The loop and node equations are written below to develop the Kelvin–Heaviside transmission line equations with a current source:

Figure 27 Equivalent lumped circuit of a transmission line with a shunt - фото 109

Figure 2.7 Equivalent lumped circuit of a transmission line with a shunt current source.

The Loop Equation

The Node Equation For Δx 0 the above equations are reduced to 2152 - фото 110

The Node Equation

For Δx 0 the above equations are reduced to 2152 The above equations - фото 111

For Δx → 0, the above equations are reduced to

(2.1.52) The above equations are rewritten below in term of the characteristic impedance - фото 112

The above equations are rewritten below in term of the characteristic impedance (Z 0) and propagation constant (γ) of a transmission line:

(2.1.53) On solving the above equations for the voltage the following inhomogeneous - фото 113

On solving the above equations for the voltage, the following inhomogeneous voltage wave equation, with a current source, is obtained:

(2.1.54) Away from the location of the current source ie for x x 0 equation - фото 114

Away from the location of the current source, i.e. for x ≠ x 0, equation (2.1.54)reduces to the homogeneous equation (2.1.37a). The wave equation for the current wave, with a shunt current source, could also be rewritten.

2.1.7 Solution of Voltage and Current‐Wave Equation

The voltage and current wave equations in the phasor form are given in equation (2.1.37). The solution of a wave equation is written either in terms of the hyperbolic functions or in terms of the exponential functions. The first form is suitable for a line terminated in an arbitrary load. A section of the line transforms the load impedance into the input impedance at any location on the line. The impedance transformation takes place due to the standing wave formation. The hyperbolic form of the solution also provides the voltage and current distributions along the line. The exponential form of the solution demonstrates the traveling waves on a line, both in the forward and in the backward directions. A combination of the forward‐moving and the backward‐moving waves produces the standing wave on a transmission line.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction To Modern Planar Transmission Lines»

Представляем Вашему вниманию похожие книги на «Introduction To Modern Planar Transmission Lines» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction To Modern Planar Transmission Lines»

Обсуждение, отзывы о книге «Introduction To Modern Planar Transmission Lines» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x