34 Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, & A. M. Dziewonski (1985). Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541–545, doi:10.1038/314752a0.
35 He, Y., & L. Wen (2009). Structural features and shear‐velocity structure of the “Pacific Anomaly.” J. Geophys. Res., 114(B2), B02,309, doi:10.1029/2008JB005814.
36 Jellinek, A. M., & M. Manga (2002). The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418(6899), 760–763, doi:10.1038/nature00979.
37 Jenkins, J., A. Deuss, & S. Cottaar (2016). Converted phases from sharp 1000 km depth mid‐mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters, 459, 196–207, doi:10.1016/j.epsl.2016.11.031.
38 Jordan, T. H., P. Puster, & G. A. Glatzmaier (1993). Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions. Science, 261, 1427–1431.
39 Kaercher, P., L. Miyagi, W. Kanitpanyacharoen, E. Zepeda‐Alarcon, Y. Wang, D. Parkinson, R. A. Lebensohn, F. De Carlo, & H.‐R. Wenk (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145, doi:10.1016/j.epsl.2016.09.030.
40 Karato, S.‐i., & B. B. Karki (2001). Origin of lateral variation of seismic wave velocities and density in the deep mantle. Journal of Geophysical Research: Solid Earth, 106(B10), 21,771–21,783, doi:10.1029/2001JB000214.
41 Katsura, T., H. Yamada, T. Shinmei, A. Kubo, S. Ono, M. Kanzaki, A. Yoneda, M. J. Walter, E. Ito, S. Urakawa, K. Funakoshi, & W. Utsumi (2003). Post‐spinel transition in Mg2SiO4 determined by high P–T in situ X‐ray diffractometry. Physics of the Earth and Planetary Interiors, 136(1–2), 11–24.
42 Kido, M., D. A. Yuen, O. Čadek, & T. Nakakuki (1998). Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole‐mantle versus blocked‐flow situations. Physics of the Earth and Planetary Interiors, 107(4), 307–326.
43 King, S. D., & G. Masters (1992). An inversion for radial viscosity structure using seismic tomography. Geophysical Research Letters, 19(15), 1551–1554, doi:10.1029/92GL01700.
44 Komatitsch, D., & J. Tromp (2002). Spectral‐element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390–412, doi:10.1046/j.1365‐246X.2002.01653.x.
45 Kustowski, B., G. Ekström, & A. M. Dziewoński (2008). Anisotropic shear‐wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research: Solid Earth, 113(B6), doi:10.1029/2007JB005169.
46 Lau, H. C. P., J. X. Mitrovica, J. Austermann, O. Crawford, D. Al‐Attar, & K. Latychev (2016). Inferences of mantle viscosity based on ice age data sets: Radial structure. Journal of Geophysical Research, 123, 7237–7252, doi:https://doi.org/10.1029/2018JB015740.
47 Lau, H. C. P., J. X. Mitrovica, J. L. Davis, J. Tromp, H.‐Y. Yang, & D. Al‐Attar (2017). Tidal tomography constrains Earth’s deep‐mantle buoyancy. Nature, 551, 321–326, doi:10.1038/nature24452.
48 Li, X.‐D., & B. Romanowicz (1995). Comparison of global waveform inversions with and without considering cross‐branch modal coupling. Geophysical Journal International, 121(3), 695–709, doi:10.1111/j.1365‐246X.1995.tb06432.x.
49 Liu, X., & S. Zhong (2015). The long‐wavelength geoid from three‐dimensional spherical models of thermal and thermochemical mantle convection. Journal of Geophysical Research: Solid Earth, 120(6), 4572–4596, doi:10.1002/2015JB012016.
50 Liu, X., & S. Zhong (2016). Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation. Geochemistry, Geophysics, Geosystems, 17(3), 895–913, doi:10.1002/2015GC006161.
51 Lourenço, D. L., & M. L. Rudolph (in review). Shallow lower mantle viscosity modulates the pattern of mantle structure, in review at Proceedings of the National Academy of Sciences.
52 Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 675–688, doi:10.1046/j.1365‐246X.2002.01847.x.
53 Malinverno, A., & V. A. Briggs (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 1005–1016, doi:10.1190/1.1778243.
54 Mao, W., & S. Zhong (2018). Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11(11), 876, doi:10.1038/s41561‐018‐0225‐2.
55 Mao, W., & S. Zhong (2019). Controls on global mantle convective structures and their comparison with seismic models. Journal of Geophysical Research: Solid Earth, doi:10.1029/2019JB017918.
56 Marquardt, H., & L. Miyagi (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314, doi:10.1038/ngeo2393.
57 Masters, G., S. Johnson, G. Laske, H. Bolton, & J. H. Davies (1996). A Shear‐Velocity Model of the Mantle [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1711), 1385–1411, doi:10.1098/rsta.1996.0054.
58 Masters, G., G. Laske, H. Bolton, & A. Dziewonski (2000). The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, vol. 117, edited by S.‐i. Karato, A. M. Forte, R. Lieberman, G. Masters, & L. Stixrude, pp. 63–87, American Geophysical Union, Washington, D. C.
59 Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, & R. D. Müller (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250, doi:10.1016/j.gloplacha.2016.10.002.
60 McNamara, A. K., & S. Zhong (2004). Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109(B7), B07,402, doi:10.1029/2003JB002847.
61 McNamara, A. K., & S. Zhong (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139, doi:10.1038/nature04066.
62 Milne, G. A., J. X. Mitrovica, & A. M. Forte (1998). The sensitivity of glacial isostatic adjustment predictions to a low‐viscosity layer at the base of the upper mantle. Earth and Planetary Science Letters, 154(1), 265–278, doi:10.1016/S0012‐821X(97)00191‐X.
63 Mitrovica, J. X., & A. M. Forte (1997). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research: Solid Earth, 102(B2), 2751–2769, doi:10.1029/96JB03175.
64 Mitrovica, J. X., & A. M. Forte (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189, doi:10.1016/j.epsl.2004.06.005.
65 Morra, G., D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutsakos, & P. J. Tackley (2010). The fate of the slabs interacting with a density/viscosity hill in the mid‐mantle. Physics of the Earth and Planetary Interiors, 180(3‐4), 271–282, doi:10.1016/j.pepi.2010.04.001.
66 Moulik, P., & G. Ekström (2014). An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long‐period waveforms. Geophysical Journal International, 199(3), 1713–1738, doi:10.1093/gji/ggu356.
67 Moulik, P., & G. Ekström (2016). The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. Journal of Geophysical Research (Solid Earth), 121(4), 2737–2771, doi:10.1002/2015JB012679.
Читать дальше