Darüber hinaus wurde in den vergangenen zwei Jahrzehnten eine Fülle experimenteller Belege dafür gefunden, dass fundamentale molekulare Zellprozesse stochastischer Natur sind, etwa die Verdopplung und Rekombination der DNA oder die als Genexpression bezeichneten Prozesse, die zur Proteinbiosynthese hinführen.4 Wir können daher von einem Aufstieg des stochastischen Paradigmas in der Biologie sprechen.
Doch verfügen wir über geeignete Bezeichnungen und Begriffe, um Lebensvorgänge auf der Zell-, Zellverbands- und Organismenebene angemessen zu beschreiben? Können insbesondere Maschinen, mit ihren Zahnrädern, Achsen, Hebeln und Bolzen, auch weiterhin bestehen? Benötigen wir mechanische und andere bildhafte Analogien? Tatsächlich sind Metaphern in der Wissenschaftssprache allgegenwärtig. Ohne Analogien und begriffliche Metaphern kommen wir offenbar nicht aus.5
Biologie ist die Wissenschaft vom Leben, so die wörtliche Übersetzung. In dieser Definition steckt ein vieldeutiges Wort – Leben . Im eingeschränkten Sinn ist lebend oder lebendig das auszeichnende Charakteristikum von bestimmten Naturobjekten – den Lebewesen oder Organismen. Weniges fasziniert die Menschen so stark wie die Frage, wie sich lebende und nicht-lebende Objekte voneinander unterscheiden. Doch bis heute gibt es keine allgemein anerkannte Definition von lebend. In modernen (Lehr-)Büchern der biologischen Wissenschaften sucht man in der Regel vergebens nach einer Begriffsbestimmung von lebend oder Lebewesen. Aber die Frage, wie biologisches Leben definiert werden kann, gewann nicht zuletzt durch die Suche nach extraterrestrischen Lebensformen an Bedeutung.6 Im Jahre 2002 nahm sich der bekannte Biochemiker Daniel E. Koshland Jr. eines Aspektes dieser fundamentalen Frage an. Er formulierte sieben Säulen, auf denen lebende Systeme basieren; gemeint sind „wesentliche Prinzipien – thermodynamische und kinetische –, durch welche ein lebendes System operiert“:
Programm – ein organisierter Plan, der in der DNA implementiert ist, welcher die Bestandteile und ihre kinetische Wechselwirkungen beschreibt;
Improvisation – um das Überleben zu sichern, kann eine Programmänderung nötig werden, die durch einen Mutationsprozess plus Selektion erreicht werden kann;
Kompartimentierung – lebende Organismen sind von einer Hülle (Haut), Zellen von einer Membran umgeben.
Energie – [das lebende] System ist nicht im Gleichgewicht, sondern ein thermodynamisch offenes Stoffwechselsystem, im Energie- und Stoffaustausch mit der Umwelt;
Regeneration – Ersatz von chemischen Stoffen durch Diffusion oder aktiven Transport in das Lebewesen; Resynthese der Bestandteile und Regeneration durch Zellteilung und Fortpflanzung;
Anpassungsfähigkeit – notwendige fundamentale Verhaltensantwort (Rückkopplung) – Teil des Programms, zur Sicherung des Überlebens;
Abschottung – ungestörter Ablauf von simultan ablaufenden Reaktionen in winzigen Volumina der lebenden Zelle, ermöglicht durch die Spezifität der Enzyme; Spezifität auch bei Interaktionen der DNA und RNA.7
Diese Charakterisierung lebender Organismen ist dem Reduktionismus verpflichtet. Es gibt jedoch keinen Zweifel: Biologisches Leben ist ein emergentes Phänomen, das an die strukturelle und funktionelle Lebenseinheit – eine intakte Zelle – gebunden ist; Zellorganellen wie der Zellkern und molekulare Zellbestandteile sind unbelebt. Im einfachsten Fall, bei Einzellern, repräsentiert eine einzige Zelle einen Organismus. Die Entwicklung neuer Individuen, einschließlich des Menschen ( Homo sapiens ), geht immer von einer Zelle aus; neue Zellen entstehen nicht von Grund auf neu, sondern durch Zellteilung. Dieser Grundpfeiler der Zell- und Entwicklungsbiologie wurde bereits 1852 von Robert Remak (1815 - 1865) klar erkannt.8
Die erdgebundenen Lebensformen, die einzigen, die wir kennen, sind historisch entstanden – in einem circa 3,8 Milliarden Jahre andauernden Evolutionsprozess, der, wie die kosmologische Entwicklung, keineswegs abgeschlossen ist. Zu den herausragenden Ergebnissen der molekularen Evolution gehört die Bildung von Makromolekülen wie Nukleinsäuren und Proteinen mit selbstreplikativen und katalytischen Eigenschaften und die Entstehung von reproduktionsfähigen Zellen. Entscheidende Etappen auf dem Weg zu komplexer aufgebauten Lebewesen waren die Übergänge von der prokaryotischen zur eukaryotischen Zelle und vom einzelligen zum mehrzelligen Organismus. Der Reproduktion von Bakterien und eukaryotischen Zellen durch Zellteilung geht die Verdopplung der DNA voraus.
Das mechanistische Modell des Lebens
Wir kommen nun zu der Frage, was denn lebende Organismen von Maschinen unterscheidet. Es war Immanuel Kant (1924 - 1804), der 1790 in seinem Werk „ Kritik der Urteilskraft “ eine scharfsinnige Analyse vornahm. Kant führte aus, dass ein Naturprodukt (Lebewesen) „als organisiertes und sich selbst organisierendes Wesen“ anzusehen sei, in dem „die Teile desselben sich dadurch zur Einheit des Ganzen verbinden, daß sie voneinander wechselseitig Ursache und Wirkung ihrer Form sind. “ 9
In heutiger Fassung: Es sind komplexe Formen der zirkulären Kausalität und die autonome Selbstorganisation, welche die selbstreproduktiven Zellen und mehrzelligen Organismen von Maschinen unterscheiden.10
Dem Maschinenbild der Lebewesen erteilt Kant eine Absage, die an Klarheit nichts zu wünschen übrig lässt:
In einer Uhr ist ein Teil das Werkzeug der Bewegung der anderen, aber nicht ein Rad die wirkende Ursache der Hervorbringung der anderen; ein Teil ist zwar um des anderen willen, aber nicht durch denselben da (…) Daher bringt auch so wenig, wie ein Rad in der Uhr das andere, noch weniger eine Uhr andere Uhren hervor, so daß sie andere Materie dazu benutzte (sie organisierte); (…) oder bessert sich etwa selbst aus, wenn sie in Unordnung geraten ist: welches alles wir dagegen von der organisierten Natur erwarten können. – Ein organisiertes Wesen ist also nicht bloß Maschine (…)11
Kants erhellende Ausführungen zum Maschinenbild lebender Organismen sind von der Mehrzahl der Biologen mehr als ein Jahrhundert lang ignoriert worden. Rudolf Virchow (1821 - 1902) verkündete Mitte des 19. Jahrhunderts, im Einklang mit der vorherrschenden antivitalistischen Position, die mechanistische Auffassung des Lebens mit den Worten:
Leben ist nur eine besondere Art der Mechanik, und zwar die allerkomplizierteste Form derselben (…)12
Anderthalb Jahrhunderte später beobachtete der Physiker Paul Davies:
In völligem Gegensatz zum Vitalismus steht die mechanistische Theorie des Lebens. Ihr zufolge sind lebende Organismen komplexe Maschinen, die nach den bekannten Gesetzen der Physik funktionieren (…) Die mechanistische Theorie des Lebens macht vom Maschinenjargon freizügig Gebrauch. Lebende Zellen werden als << bezeichnet, die letztlich von DNA-Molekülen >>gesteuert<< werden; diese organisieren die << von molekularen >>Grundeinheiten<< zu größeren Strukturen nach einem >>Programm<<, das verschlüsselt in der molekularen Apparatur steckt.13
Daviesʼ Beobachtung könnte, mit Ausnahme der umstrittenen Steuerung des Zellgeschehens durch ein „Programm“, auch als aktuelle Bestandsaufnahme problemlos durchgehen.
Mechanistische Erklärungen der Lebensvorgänge lassen sich bis zu René Descartes (1596 - 1650) zurückverfolgen. Im 18. und 19. Jahrhundert bildete die mechanistische Auffassung der Lebensprozesse ein Gegengewicht zur Annahme einer Lebenskraft (lat. vis vitalis ). Vitalistische Ansichten vertraten im 19. Jahrhundert herausragende Wissenschaftler wie der Physiologe Johannes P. Müller (1801 - 1858), der Chemiker und Mikrobiologe Louis Pasteur (1822 - 1895) und später der Entwicklungsphysiologe und Philosoph Hans A. Drisch (1867 - 1941). Eine antivitalistische, mechanistische Gegenposition vertraten Justus von Liebig (1803 - 1873), Hermann von Helmholtz (1821 - 1894) und der mit diesem befreundete Physiologe Emil H. du Bois-Reymond (1818 - 1896) sowie Jacques Loeb (1859 - 1924); Letzterer vertrat eine extrem mechanistische Auffassung des Lebens.14
Читать дальше