Magdalena Salazar-Palma - Modern Characterization of Electromagnetic Systems and its Associated Metrology

Здесь есть возможность читать онлайн «Magdalena Salazar-Palma - Modern Characterization of Electromagnetic Systems and its Associated Metrology» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Modern Characterization of Electromagnetic Systems and its Associated Metrology: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Modern Characterization of Electromagnetic Systems and its Associated Metrology»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

New method for the characterization of electromagnetic wave dynamics Modern Characterization of Electromagnetic Systems Additionally, modern signal processing algorithms are introduced in order to enhance the resolution and extract information from electromagnetic systems, including where it is not currently possible. For example, the author addresses the generation of non-minimum phase or transient response when given amplitude-only data.
Presents modern computational concepts in electromagnetic system characterization Describes a solution to the generation of non-minimum phase from amplitude-only data Covers model-based parameter estimation and planar near-field to far-field transformation as well as spherical near-field to far-field transformation
is ideal for graduate students, researchers, and professionals working in the area of antenna measurement and design. It introduces and explains a new process related to their work efforts and studies.

Modern Characterization of Electromagnetic Systems and its Associated Metrology — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Modern Characterization of Electromagnetic Systems and its Associated Metrology», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The best approximation according to total least squares is that minimizes the norm of the difference between the approximated data and the model картинка 45( x ; a ) as well as the independent variables X . Considering the errors of the measured data vector, y , and the independent variables, X , (1.25)can be re‐written as

(1.28) Modern Characterization of Electromagnetic Systems and its Associated Metrology - изображение 46

where картинка 47and картинка 48are the errors in both the dependent variable measurements and independent variable measurements, respectively. We then want to approximate in a way that minimizes these errors in the dependent and independent variables. This can be expressed by,

(1.29) Modern Characterization of Electromagnetic Systems and its Associated Metrology - изображение 49

where картинка 50is an augmented matrix with the columns of error matrix картинка 51concatenated with the error vector картинка 52. The operator ‖•‖ Frepresents the Frobenius norm of the augmented matrix. The Frobenius norm is defined as the square root of the sum of the absolute squares of all of the elements in a matrix. This can be expressed in equation form as the following, where A is any matrix,

(1.30) and where σ iis the i th singular value of matrix A We will now bring the - фото 53

and where σ iis the i ‐th singular value of matrix A .

We will now bring the right‐hand side of (1.28)over to the left side of the equation and equate it to zero as such

(1.31) If the concatenated matrix X y has a rank of n 1 the n 1 columns of - фото 54

If the concatenated matrix [ X y ] has a rank of n + 1, the n + 1 columns of the matrix are linearly independent and the n + 1, m ‐dimensional columns of the matrix span the same n ‐dimensional space as X . In order to have a unique solution for the coefficients, a , the matrix [ X + картинка 55; y + картинка 56] must have n linearly independent columns. However, this matrix has n + 1 columns in total and therefore is rank is deficient by 1. We then must find the smallest matrix [ картинка 57] that changes matrix [ X y ] with a rank of n + 1, to a matrix {[ X y ] + [ картинка 58]} with a rank n . According to the Eckart‐Young‐Mirsky theorem we can achieve this by defining {[ X y ] + [ картинка 59]} as the best rank‐ n approximation to [ X y ] and by eliminating the last singular value of [ X y ] which contains the least amount of system information and provides a unique solution. The Eckart–Young–Mirsky theorem ( https://en.wikipedia.org/wiki/Low‐rank_approximation) states a low‐rank approximation is a minimizationproblem, in which the cost functionmeasures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank. To illustrate how this is accomplished, we take the SVD of [ X y ] as follows

(1.32) where U xhas n columns u yis a column vector xcontains the n largest - фото 60

where U xhas n columns, u yis a column vector, ∑ xcontains the n largest singular values diagonally, σ yis the smallest singular value, V xxis a n × n matrix, and v yyis scalar. Let us multiple both sides by matrix V .

(1.33) Next we will equate just the last columns of the matrix multiplication - фото 61

Next, we will equate just the last columns of the matrix multiplication occurring in (1.32).

(1.34) From the EckartYoung theorem we know that X y is the closest - фото 62

From the Eckart‐Young theorem, we know that {[ X y ] + [ картинка 63]} is the closest rank‐ n approximation to [ X y ]. Matrix {[ X y ] + [ картинка 64]} has the same singular vectors contained in ∑ xabove with σ yequal to zero. We can then write the SVD of {[ X y ] + [ as such 135 To obtain we must solve the following - фото 65]} as such

(1.35) To obtain we must solve the following 136 1 - фото 66

To obtain [ we must solve the following 136 136can be solved by first using - фото 67] we must solve the following

(1.36) 136can be solved by first using 132and 135which results in 137 - фото 68

(1.36)can be solved by first using (1.32)and (1.35)which results in

(1.37) Then from 134we can rewrite 137as 138 Finally X y - фото 69

Then, from (1.34)we can rewrite (1.37)as

(1.38) Finally X y can be defined as 139 - фото 70

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Modern Characterization of Electromagnetic Systems and its Associated Metrology»

Представляем Вашему вниманию похожие книги на «Modern Characterization of Electromagnetic Systems and its Associated Metrology» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Modern Characterization of Electromagnetic Systems and its Associated Metrology»

Обсуждение, отзывы о книге «Modern Characterization of Electromagnetic Systems and its Associated Metrology» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x