Environmental and Agricultural Microbiology

Здесь есть возможность читать онлайн «Environmental and Agricultural Microbiology» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Environmental and Agricultural Microbiology: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Environmental and Agricultural Microbiology»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The book,
is divided in to two parts which embodies chapters on sustenance and life cycles of these microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on behavior of microorganisms in environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters and facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next generation crop improvement strategies via rhizosphere microbiome, production and implementations of liquid biofertilizers, mitigation of methane from livestocks, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities and their environmental importance have been comprehensively elaborated. In the era of sustainable energy production biofuel and other bioenergy products play a key role and their production from microbial sources are frontiers for researchers. The last chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology.

Environmental and Agricultural Microbiology — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Environmental and Agricultural Microbiology», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

43. Guzzi, G. and La Porta, C.A., Molecular mechanisms triggered by mercury. Toxicology , 244, 1, 2008.

44. Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., Sutton, D., Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. , 18, 149, 2003.

45. VCI, Copper history/Future , Van Commodities Inc, http://trademetalfutures.com/copperhistory.html, USA, 2011.

46. Davies, B.E. and Jones, L.H.P., Micronutrients and toxic elements, in: Russell’s Soil Conditions and Plant Growth , S.E.J. Russell and A. Wild (Eds.), p. 780, Longman Scientific & Technical, London, 1988.

47. Khodadoust, A.P., Reddy, K.R., Maturi, K., Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci. , 21, 691, 2004.

48. Wong, J.P.K., Wong, Y.S., Tam, N.F.Y., Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour. Technol. , 73, 133, 2000.

49. Nies, D.H., Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. , 27, 313, 2003.

50. Harrison, J.J., Ceri, H., Stremick, C., Turner, R.J., Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiol. Lett. , 235, 357, 2004.

51. Harrison, J.J., Ceri, H., Stremick, C., Turner, R.J., Biofilm susceptibility to metal toxicity. Environ. Microbiol. , 6, 1220, 2004.

52. Gutnick, D.L. and Bach., H., Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. , 54, 451, 2000.

53. Fang, H.H.P., Xu, L.-C., Chan, K.-Y., Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res. , 36, 4709, 2002.

54. Gadd, G.M., Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. , 84, 13, 2009.

55. De Philippis, R., Colica, G., Micheletti, E., Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl. Microbiol. Biotechnol. , 92, 697, 2011.

56. Pal, A. and Paul, A.K., Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J. Microbiol. , 48, 49, 2008.

57. Salehizadeh, H. and Shojaosadati, S.A., Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus . Water Res. , 37, 4231, 2003.

58. Gavrilescu, M., Removal of heavy metals from the environment by biosorption. Eng. Life Sci. , 4, 219, 2004.

59. Sundar, K., Mukherjee, A., Sadiq, M., Chandrasekaran, N., Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin. J. Hazard. Mater. , 187, 553, 2011.

60. O’Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., Kolter, R., Genetic approaches to study of biofilms. Methods Enzymol. , 310, 91, 1999.

61. Gupta, P. and Diwan, B., Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. , 13, 58, 2017.

62. Gupta, P. and Diwan, B., Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep. , 13, 58, 2017.

63. Alluri, H.K., Ronda, S.R., Settalluri, V.S., Bondili, J.S., Suryanarayana, V., Venkateshwar, P., Biosorption: An eco-friendly alternative for heavy metal removal. Afr. J. Biotechnol. , 6, 25, 2007.

64. Ahalya, N., Ramachandra, T.V., Kanamadi, R.D., Biosorption of heavy metals. Res. J. Chem. Environ. , 7, 71, 2003.

65. De Philippis, R., Colica, G., Micheletti, E., Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biot. , 92, 697, 2011.

66. Pereira, S., Micheletti, E., Zille, A., Santos, A., Moradas-Ferreira, P., Tamagnini, P., De Philippis, R., Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology , 157, 451, 2011.

67. Vera, M., Schippers, A., Sand, W., Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol. , 97, 7529, 2013.

68. Christine, L. and Mamindy, Y., Bioremediation of heavy metals in sediment, in: Bioremediation: Processes, Challenges and Future Prospects , J.B. Velázquez-Fernández and S. Muñiz-Hernández (Eds.), pp. 3–18, Nova science publisher, Hauppauge, New York, US, 2014.

69. Sand, W. and Gehrke, T., Extracellular polymeric substances mediate bioleaching/ biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res. Microbiol. , 157, 49, 2006.

70. Schippers, A. and Sand, W., Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. , 65, 319, 1999.

71. Ike, M., Yamashita, M., Kuroda, M., Microbial Removal and Recovery of Metals from Wastewater, in: Applied Bioengineering: Innovations and Future Directions , T. Yoshida (Ed.), pp. 573–595, Wiley Publisher, Weinheim, Germany, 2017.

72. Liu, S., Zhang, F., Chen, J., Sun, G., Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J. Environ. Sci. , 23, 1544, 2011.

73. Pepi, M., Gaggi, C., Bernardini, E., Focardi, S., Lobianco, A., Ruta, M., Nicolardi, V., Volterrani, M., Gasperini, S., Trinchera, G., Renzi, P., Gabellini, M., Focardi, S.E., Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int. Biodeter. Biodegr. , 65, 85, 2011.

74. Żur, J., Wojcieszyńska, D., Guzik, U., Metabolic Responses of Bacterial Cells to Immobilization. Molecules , 21, 958, 2016.

75. Gadd, G.M., Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. , 11, 271, 2000.

76. Raspor, P., Batič, M., Jamnik, P., Josić, D., Milačič, R., Paš, M., Recek, M., Režić-Dereani, V., Skrt, M., The influence of chromium compounds on yeast physiology: (A review). Acta Microbiol. Immunol. Hung. , 47, 143, 2000.

77. Focardi, S., Pepi, M., Focardi, S.E., Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications, in: Biodegradation-Life of Science , R. Chamy (Ed.), pp. 321–347, InTech Open, London, UK, 2013.

78. Lee, J.H., Kim, M.G., Yoo, B., Myung, N.V., Maeng, J., Lee, T., Dohnalkova, A.C., Fredrickson, J.K., Sadowsky, M.J., Hur, H.G., Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. PNAS , 104, 20410, 2007.

1 * Corresponding author: microbaalu8211@gmail.com

4

Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects

Mohammad Asif Ali1,2*†, Aniruddha Nag1,3† and Maninder Singh1†

1Graduate School of Advanced Science and Technology, Energy and Environment Area, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

2Soft Matter Sciences and Engineering Laboratory, ESPCI Paris, PSL University, CNRS, Paris, France

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Environmental and Agricultural Microbiology»

Представляем Вашему вниманию похожие книги на «Environmental and Agricultural Microbiology» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Environmental and Agricultural Microbiology»

Обсуждение, отзывы о книге «Environmental and Agricultural Microbiology» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x