Gérard Favier - Matrix and Tensor Decompositions in Signal Processing

Здесь есть возможность читать онлайн «Gérard Favier - Matrix and Tensor Decompositions in Signal Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Matrix and Tensor Decompositions in Signal Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Matrix and Tensor Decompositions in Signal Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.

Matrix and Tensor Decompositions in Signal Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Matrix and Tensor Decompositions in Signal Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

278 259

279 260

280 261

281 262

282 263

283 264

284 265

285 266

286 267

287 268

288 269

289 270

290 271

291 272

292 273

293 274

294 275

295 276

296 277

297 278

298 279

299 280

300 281

301 282

302 283

303 284

304 285

305 286

306 287

307 288

308 289

309 290

310 291

311 292

312 293

313 294

314 295

315 296

316 297

317 298

318 299

319 300

320 301

321 302

322 303

323 304

324 305

325 306

326 307

327 308

328 309

329 310

330 311

331 312

332 313

333 314

334 315

335 316

336 317

337 318

338 319

339 320

340 321

341 322

342 323

343 324

344 325

345 326

346 327

347 329

348 330

349 331

350 332

351 333

352 334

353 335

354 336

355 337

356 338

357 339

358 340

359 341

360 342

361 343

362 344

363 345

364 347

365 348

366 349

367 350

368 351

369 352

370 353

371 354

372 355

373 356

374 357

Matrices and Tensors with Signal Processing Set

coordinated by

Gérard Favier

Volume 2

Matrix and Tensor Decompositions in Signal Processing

Gérard Favier

First published 2021 in Great Britain and the United States by ISTE Ltd and - фото 4

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2021

The rights of Gérard Favier to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2021938218

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-155-0

Introduction

The first book of this series was dedicated to introducing matrices and tensors (of order greater than two) from the perspective of their algebraic structure, presenting their similarities, differences and connections with representations of linear, bilinear and multilinear mappings. This second volume will now study tensor operations and decompositions in greater depth.

In this introduction, we will motivate the use of tensors by answering five questions that prospective users might and should ask:

– What are the advantages of tensor approaches?

– For what uses?

– In what fields of application?

– With what tensor decompositions?

– With what cost functions and optimization algorithms?

Although our answers are necessarily incomplete, our aim is to:

– present the advantages of tensor approaches over matrix approaches;

– show a few examples of how tensor tools can be used;

– give an overview of the extensive diversity of problems that can be solved using tensors, including a few example applications;

– introduce the three most widely used tensor decompositions, presenting some of their properties and comparing their parametric complexity;

– state a few problems based on tensor models in terms of the cost functions to be optimized;

– describe various types of tensor-based processing, with a brief glimpse of the optimization methods that can be used.

I.1. What are the advantages of tensor approaches?

In most applications, a tensor χ of order N is viewed as an array of real or complex numbers. The current element of the tensor is denoted x i1,… ,iN, where each index is associated with the n th mode and I n is its dimension ie the number of - фото 5is associated with the n th mode, and I n is its dimension, i.e. the number of elements for the n th mode. The order of the tensor is the number N of indices, i.e. the number of modes. Tensors are written with calligraphic letters 1. An N th-order tensor with entries is written where ℝ or ℂ depending on whether the tensor is realvalued - фото 6is written where ℝ or ℂ depending on whether the tensor is realvalued or - фото 7where картинка 8= ℝ or ℂ, depending on whether the tensor is real-valued or complex-valued, and I 1× · · · × I N represents the size of χ .

In general, a mode (also called a way) can have one of the following interpretations: (i) as a source of information (user, patient, client, trial, etc.); (ii) as a type of entity attached to the data (items/products, types of music, types of film, etc.); (iii) as a tag that characterizes an item, a piece of music, a film, etc.; (iv) as a recording modality that captures diversity in various domains (space, time, frequency, wavelength, polarization, color, etc.). Thus, a digital image in color can be represented as a three-dimensional tensor (of pixels) with two spatial modes, one for the rows (width) and one for the columns (height), and one channel mode (RGB colors). For example, a color image can be represented as a tensor of size 1024 × 768 × 3, where the third mode corresponds to the intensity of the three RGB colors (red, green, blue). For a volumetric image, there are three spatial modes ( width × height × depth ), and the points of the image are called voxels. In the context of hyperspectral imagery, in addition to the two spatial dimensions, there is a third dimension corresponding to the emission wavelength within a spectral band.

Tensor approaches benefit from the following advantages over matrix approaches:

– the essential uniqueness property 2, satisfied by some tensor decompositions, such as PARAFAC (parallel factors) (Harshman 1970) under certain mild conditions; for matrix decompositions, this property requires certain restrictive conditions on the factor matrices, such as orthogonality, non-negativity, or a specific structure (triangular, Vandermonde, Toeplitz, etc.);

– the ability to solve certain problems, such as the identification of communication channels, directly from measured signals, without requiring the calculation of high-order statistics of these signals or the use of long pilot sequences. The resulting deterministic and semi-blind processings can be performed with signal recordings that are shorter than those required by statistical methods, based on the estimation of high-order moments or cumulants. For the blind source separation problem, tensor approaches can be used to tackle the case of underdetermined systems, i.e. systems with more sources than sensors;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Matrix and Tensor Decompositions in Signal Processing»

Представляем Вашему вниманию похожие книги на «Matrix and Tensor Decompositions in Signal Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Matrix and Tensor Decompositions in Signal Processing»

Обсуждение, отзывы о книге «Matrix and Tensor Decompositions in Signal Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x