Fabio Giannino - Electromagnetic Methods in Geophysics

Здесь есть возможность читать онлайн «Fabio Giannino - Electromagnetic Methods in Geophysics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Electromagnetic Methods in Geophysics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Electromagnetic Methods in Geophysics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the utility of four popular electromagnetic geophysical techniques In
, accomplished researchers Fabio Giannino and Giovanni Leucci deliver an in-depth exploration of the theory and application of four different electromagnetic geophysical techniques: ground penetrating radar, the frequency domain electromagnetic method, the time domain electromagnetic method, and the airborne electromagnetic method. The authors offer a full description of each technique as they relate to the economics, planning, and logistics of deploying each of them on-site.
The book also discusses the potential output of each method and how it can be combined with other sources of below- and above-ground information to create a digitized common point cloud containing a wide variety of data.
Giannino and Leucci rely on 25 years of professional experience in over 40 countries around the world to provide readers with a fulsome description of the optimal use of GPR, FDEM, TDEM, and AEM, demonstrating their flexibility and applicability to a wide variety of use cases.
Readers will also benefit from the inclusion of:
A thorough introduction to electromagnetic theory, including the operative principles and theory of ground penetrating radar (GPR) and the frequency domain electromagnetic method (FDEM) An exploration of hardware architecture and surveying, including GPR, FDEM, time domain electromagnetic method (TDEM), and airborne electromagnetic (AEM) surveying A collection of case studies, including a multiple-geophysical archaeological GPR survey in Turkey and a UXO search in a building area in Italy using FDEM /li> Discussions of planning and mobilizing a campaign, the shipment and clearance of survey equipment, and managing the operative aspects of field activity Perfect for forensic and archaeological geophysicists,
will also earn a place in the libraries of anyone seeking a one-stop reference for the planning and deployment of GDR, FDEM, TDEM, and AEM surveying techniques.

Electromagnetic Methods in Geophysics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Electromagnetic Methods in Geophysics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Further to the above, vectors E , D , B , H , are linked to ε dielectric constant (in F/m), μ magnetic permittivity (H/m), and σ electric conductivity (S/m), by the following relations:

(2.2.5) картинка 39

(2.2.6) картинка 40

(2.2.7) картинка 41

The ε dielectric constant (in F/m), μ magnetic permittivity (H/m), and σ electric conductivity (S/m), are physical properties that can be associated to natural soils or man‐made objects buried in the ground, for subsoil modeling and interpretation.

In order to obtain a set of two equations describing the propagation of the electric and the magnetic field in a homogeneous and isotropic mean whose physical properties are given by ε, μ, σ, Maxwell’s equation can be further reduced to:

(2.2.8) 229 Where and ω is the angular frequency 2π f - фото 42

(2.2.9) Where and ω is the angular frequency 2π f with f representing the EM - фото 43

Where, картинка 44and ω is the angular frequency (2π f ), with f representing the EM signal frequency.

In (2.2.8)and (2.2.9), the term Iωμσ relates with the so‐called conduction currents , whereas the term εμω 2relates with the displacements current . It can be observed that, at frequency lower than 10 KHz, conduction currents (hence the term Iωμσ ) prevail with respect to the displacements current (εμω 2); this condition is known as inductive regime. On the other hand, when the frequency of the EM signal is higher than 10 MHz, displacement current ( Iωμσ ), prevails with respect to the conductive current, and thus we have the so‐called radar regime.

In FDEM methods, EM fields propagates according to the inductive regime, whereas the Georadar (GPR) method follows the radar regime.

It may also be useful recalling here, the meaning of ε (dielectric constant) and μ (magnetic permittivity): dielectric constant is defined as the physical property of a material of holding an electric charge when an electric field is applied. The higher the electrical conductivity σ , the higher ε. ε is measured in Farad ( F ).

Magnetic permittivity μ represents the physical property of a material of holding the magnetization when a magnetic field is applied. μ is measured in Henry ( H ). The greatest part of geological material has a very low value of μ which is about (4π*10 −7 H ). However, it dramatically increases in those substances having magnetic properties.

2.2.2. The Relation Between the Primary and Secondary EM Field

As mentioned above, when an alternating current of frequency f and intensity I pflows within a transmitting coil, it generates a magnetic field that is called primary magnetic field . This magnetic field, spreads in all the directions, including the subsoil. Also, if a receiving coil is located at a distance s from the transmitter, part of the magnetic field directly arriving at the receiver from the transmitter coil, holds the same phase and amplitude of the EM signal spread out form the transmitter ( Figure 2.2.3).

At the same time, the portion of magnetic field (primary) reaching the subsoil, will induce the subsoil itself (according to the Faraday’s law) to generate an electric current ( eddy current ) having the same frequency of the primary field, but with a 90° (π/2) phase difference.

These electric currents (the eddy currents , the so‐called secondary ), in turn, will flow into the subsoil according to the Ohm’s law( I = ∆ V / R , where ΔV is the voltage and R is the electric resistance of the medium), and shows, according to the Ampere’s law, a magnetic field associated (secondary) that, once detected by the receiver coil, shall have a phase difference with respect to the primary, equals to φ.

The phase difference φ depends upon the conductors (medium) physical properties, and it is represented by the following mathematical equation:

(2.2.10) Electromagnetic Methods in Geophysics - изображение 45

In 2.2.10, L represents the inductance (being this the property of an electric conductor or circuit that causes an electromotive force to be generated by a change in the current flowing) and R the electrical resistance.

Thus, the total phase difference between the primary and the secondary magnetic field, shall be:

(2.2.11) Electromagnetic Methods in Geophysics - изображение 46

Figure 223 Sketch of the propagation of an EM filed generated by a - фото 47

Figure 2.2.3 Sketch of the propagation of an EM filed generated by a transmitter. Ip is the electric current generated at the transmitter (primary, dashed line), Is is the induced electric current (secondary, dashed‐point line). Dashed‐point lines indicates the secondary magnetic field, whereas dashed lines indicate the primary magnetic field. S is the coils spacing

(modified from F. Giannino, 2014).

A sketch of the phase relation between the primary and the secondary, is illustrated in Figure 2.2.4.

It can be observed that, when EM measurements are carried out at high‐conductive areas, R tends to 0 and φ tend to π/2 (90°), and the phase of S is about ‐180° with respect to R .

On the other hand, when high‐resistive targets are present in the subsoil, R tends to ∞ and φ tends to 0 , with the phase of S at ‐90° with respect to R (D.S. Parasnis, 1979).

Furthermore, it should be noticed that S may be factorized into its components S sin φ and S cos φ : S sin φ is the so‐called Real component ( Re , in phase ) and S cos φ is the imaginary component ( Im , quadrature ). As the ratio between the in phase (real) and quadrature (imaginary) component, depends upon φ , this is also a measure of the electrical conductivity of the medium where the EM primary field propagates: the higher the ratio Re/Im the higher the electrical conductivity (P.V. Sharma, 1997).

It can be said that the in phase component is more sensitive to conductive material, whereas the quadrature component is more sensitive to the resistive materials.

Figure (2.2.5), illustrates the response of the Real and Imaginary component of a secondary magnetic field, due to a homogeneous EM field, and in relation to the ratio R/ω .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Electromagnetic Methods in Geophysics»

Представляем Вашему вниманию похожие книги на «Electromagnetic Methods in Geophysics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Electromagnetic Methods in Geophysics»

Обсуждение, отзывы о книге «Electromagnetic Methods in Geophysics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x