Saeid Sanei - EEG Signal Processing and Machine Learning

Здесь есть возможность читать онлайн «Saeid Sanei - EEG Signal Processing and Machine Learning» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

EEG Signal Processing and Machine Learning: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «EEG Signal Processing and Machine Learning»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field

EEG Signal Processing and Machine Learning — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «EEG Signal Processing and Machine Learning», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.20) where denotes the complex conjugate is the analyzing wavelet a 0 is - фото 159

where (.) *denotes the complex conjugate, картинка 160is the analyzing wavelet, a (>0) is the scale parameter (inversely proportional to frequency) and b is the position parameter. The transform is linear and is invariant under translations and dilations, i.e.:

(4.21) and 422 The last property makes the WT very suitable for analyzing - фото 161

and

(4.22) The last property makes the WT very suitable for analyzing hierarchical - фото 162

The last property makes the WT very suitable for analyzing hierarchical structures. It is similar to a mathematical microscope with properties that do not depend on the magnification. Consider a function W ( a , b ) which is the WT of a given function f ( t ). It has been shown [18, 19] that f ( t ) can be recovered according to:

Figure 44 TF representation of an epileptic waveform in a for different time - фото 163

Figure 4.4 TF representation of an epileptic waveform in (a) for different time resolutions using the Hanning window of (b) 1 ms, and (c) 2 ms duration.

(4.23) where 424 Although often it is considered that ψ t ϕ t other - фото 164

where

(4.24) Although often it is considered that ψ t ϕ t other alternatives for - фото 165

Although often it is considered that ψ ( t ) = ϕ ( t ), other alternatives for ϕ ( t ) may enhance certain features for some specific applications [20]. The reconstruction of f ( t ) is subject to having C ϕdefined (admissibility condition). The case ψ ( t ) = ϕ ( t ) implies картинка 166, i.e. the mean of the wavelet function is zero.

4.5.1.2 Examples of Continuous Wavelets

Different waveforms/wavelets/kernels have been defined for the continuous WTs. The most popular ones are given below.

Morlet's wavelet is a complex waveform defined as:

(4.25) This wavelet may be decomposed into its constituent real and imaginary parts - фото 167

This wavelet may be decomposed into its constituent real and imaginary parts as:

(4.26) 427 where b 0is a constant and it is considered that b 0 0 to satisfy - фото 168

(4.27) where b 0is a constant and it is considered that b 0 0 to satisfy the - фото 169

where b 0is a constant, and it is considered that b 0> 0 to satisfy the admissibility condition. Figure 4.5shows respectively the real and imaginary parts.

The Mexican hat defined by Murenzi [17] is:

(4.28) which is the second derivative of a Gaussian waveform see Figure 46 - фото 170

which is the second derivative of a Gaussian waveform (see Figure 4.6).

4.5.1.3 Discrete‐Time Wavelet Transform

In order to process digital signals a discrete approximation of the wavelet coefficients is required. The discrete wavelet transform (DWT) can be derived in accordance with the sampling theorem if we process a frequency band‐limited signal.

The continuous form of the WT may be discretized with some simple considerations on the modification of the wavelet pattern by dilation. Since generally the wavelet function is not band limited it is necessary to suppress the values outside the - фото 171is not band limited, it is necessary to suppress the values outside the frequency components above half the sampling frequency to avoid aliasing (overlapping in frequency) effects.

Figure 45 Morlets wavelet real and imaginary parts shown respectively in a - фото 172

Figure 4.5 Morlet's wavelet: real and imaginary parts shown respectively in (a) and (b).

Figure 46 Mexican hat wavelet A Fourier space may be used to compute the - фото 173

Figure 4.6 Mexican hat wavelet.

A Fourier space may be used to compute the transform scale‐by‐scale. The number of elements for a scale can be reduced if the frequency bandwidth is also reduced. This requires a band‐limited wavelet. The decomposition proposed by Littlewood and Paley [21] provides a very nice illustration of the reduction of elements scale‐by‐scale. This decomposition is based on an iterative dichotomy of the frequency band. The associated wavelet is well localized in Fourier space where it allows a reasonable analysis to be made although not in the original space. The search for a discrete transform, which is well localized in both spaces leads to multiresolution analysis.

4.5.1.4 Multiresolution Analysis

Multiresolution analysis results from the embedded subsets generated by the interpolations (or down‐sampling and filtering) of the signal at different scales. A function f ( t ) is projected at each step j onto the subset V j. This projection is defined by the scalar product c j( k ) of f ( t ) with the scaling function φ ( t ), which is dilated and translated:

(4.29) where denotes an inner product and φ t has the property 430 - фото 174

where 〈·, ·〉 denotes an inner product and φ ( t ) has the property:

(4.30) EEG Signal Processing and Machine Learning - изображение 175

where the right side is convolution of h and ϕ . By taking the Fourier transform of both sides:

(4.31) EEG Signal Processing and Machine Learning - изображение 176

where картинка 177and картинка 178are the Fourier transforms of h ( t ) and ϕ ( t ) respectively. For a discrete frequency space (i.e. using the DFT) the above equation ( Eq. 4.31) permits the computation of the wavelet coefficient C j + 1( k ) from C j( k ) directly. If we start from C 0( k ) we compute all C j( k ), with j > 0, without directly computing any other scalar product:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «EEG Signal Processing and Machine Learning»

Представляем Вашему вниманию похожие книги на «EEG Signal Processing and Machine Learning» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «EEG Signal Processing and Machine Learning»

Обсуждение, отзывы о книге «EEG Signal Processing and Machine Learning» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x