Janko Auerswald - Grundlagen der Funktionswerkstoffe für Studium und Praxis

Здесь есть возможность читать онлайн «Janko Auerswald - Grundlagen der Funktionswerkstoffe für Studium und Praxis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Grundlagen der Funktionswerkstoffe für Studium und Praxis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Grundlagen der Funktionswerkstoffe für Studium und Praxis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Das neue Lehrbuch zu Funktionswerkstoffen bietet angehenden Ingenieurinnen und Ingenieuren einen motivierenden Einstieg in die Werkstoffkunde dank der ausführlichen Darlegung der Grundlagen und einem starken Praxisbezug.

Grundlagen der Funktionswerkstoffe für Studium und Praxis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Grundlagen der Funktionswerkstoffe für Studium und Praxis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Abb 21 Wichtige Richtungen im kubischen System Beispiel Die Richtung 111 - фото 18

Abb. 2.1 Wichtige Richtungen im kubischen System. Beispiel: Die Richtung [111] ergibt sich als vektorielle Zusammensetzung aus jeweils einem Schritt in x -, y - und z -Richtung.

Im kubischen Kristallsystem, zu dem die krz, die kfz und die Diamantstruktur der Halbleiter der IV. Hauptgruppe sowie Zinkblendestruktur und der III-V-Halbleiter gehören, basieren die Miller’schen Indizes für alle Richtungen und Ebenen auf einem kartesischen Koordinatensystem. Die Richtungen [xyz] ergeben sich aus einer vektoriellen Zusammensetzung der kubischen Koordinaten ( Abb. 2.1).

Die Richtungen [100], [010] und [001] entsprechen den Würfelkanten der Elementarzelle und spannen das kartesische Koordinatensystem auf. Sie können auch zu Richtungen des Typs ⟨100⟩ zusammengefasst werden, da sie aus Symmetriegründen kristallographisch gleichwertig sind. Die Richtungen vom Typ ⟨111⟩ sind die Raumdiagonalen und sind in krz Metallen die dichtest gepackten Richtungen. Die Richtungen vomTyp ⟨110⟩ sind die Flächendiagonalen und sind in kfzMetallen die dichtest gepackten Richtungen. In Halbleitern (Diamant- und Zinkblendestruktur) sind die ⟨110⟩-Richtungen die Spaltrichtungen, in denen die Chips bevorzugt ausgesägt werden. Sie sind als Flats (flache Kanten) an rundenWafern erkennbar. Die Richtungen vomTyp ⟨112⟩ spielen in kfzMetallen und in der Formgedächtnislegierung Nitinol (NiTi) eine wichtige Rolle bei der Entstehung von Stapelfehlern und Zwillingsfehlern.

Die Miller’schen Indizes von Ebenen in kubischen Kristallsystemen ergeben sich indirekt aus den Schnittpunkten der Ebenen mit den Koordinatenachsen. Allerdings erscheinen in den Miller’schen Indizes für Ebenen (xyz) die Kehrwerte der Schnittpunkte mit den Achsen. Sie entsprechen dem Normalenvektor der Ebene. Verläuft eine betrachtete Ebene durch den Koordinatenursprung, so wird sie um einen Schritt in x, y , oder z aus dem Koordinatenursprung heraus verschoben, um ihre Miller’schen Indizes bestimmen zu können. Die Ebenen vom Typ {100} sind die Würfelflächen. Die Ebenen vom Typ {111} sind die dichtest gepackten Ebenen und damit die Gleitebenen für Versetzungen im kfz System. Die Ebenen vom Typ {110}, {112} und {123} sind Gleitebenen im krz System ( Abb. 2.2).

In der hexagonal dichtesten Packung gibt es kein kartesisches Koordinatensystem. Die wichtigste Ebene ist die(001)-Ebene, da sie am dichtesten gepackt ist ( Abb. 2.3). In ihr liegen die dichtest gepackten Richtungen [100], [010] und [110].

Die krz Struktur ist nicht so dicht gepackt wie die kfz und hdp Struktur ( Abb. 2.4).

Abb 22 Wichtige Ebenen in kubischen Elementarzellen Beispiel Die Ebene - фото 19

Abb. 2.2 Wichtige Ebenen in kubischen Elementarzellen. Beispiel: Die Ebene (100) schneidet die x -Achse in 1, die y -und z - Achse in w (im Unendlichen, Ebene verläuft parallel zur y -und z -Achse). Aus den Kehr werten 1/1,1/∞ und 1/∞ ergeben sich die Miller’schen Indizes (100).

Abb 23 Wichtige Richtungen blau und Ebenen rot im hdp System Das - фото 20

Abb. 2.3 Wichtige Richtungen (blau) und Ebenen (rot) im hdp System. Das Koordinatensystem ist hier nicht kartesisch. Die rot markierten Ebenen sind dichtest gepackt, parallel und kristallo-graphisch identisch.

Das kfz und das hdp Gitter haben beide die dichtest gepackte Anordnung von Atomen mit einer maximal möglichen Packungsdichte von 74 %. Sie unterscheiden sich jedoch in der Stapelfolge der dichtest gepackten Ebenen ( Abb. 2.5).

2.2 Kristallbaudefekte

In der Realität haben alle Werkstoffe Defekte im Aufbau von Struktur und Gefüge. Diese beeinflussen erheblich die Eigenschaften, z. B. die elektrische Leitfähigkeit oder das Verformungsverhalten.

Man kann Kristallbaudefekte gemäß ihrer geometrischen Dimension (D) klassifizieren:

• 0D: Punktförmige Defekte, z. B. Leerstellen, Zwischengitter und Austauschatome

• 1D: Linienförmige Defekte, z. B. Versetzungen

• 2D: Flächenförmige Defekte, z. B. Korngrenzen, Phasengrenzen

• 3D: Volumenartige Defekte, z. B. Ausscheidungen (innerhalb eines Kristallits, können von Versetzungen überklettert werden)

Abb 24 Die dichtest gepackten Ebenen der drei Kristallstrukturen krz a kfz - фото 21

Abb. 2.4 Die dichtest gepackten Ebenen der drei Kristallstrukturen krz (a), kfz (b) und hdp (c). Die dichteste Kugelpackung von Atomen gibt es im kfz und hdp Gitter.

Abb 25 Stapelfolge der dichtest gepackten Ebenen im kfz Gitter ABC ABC und - фото 22

Abb. 2.5 Stapelfolge der dichtest gepackten Ebenen im kfz Gitter (ABC ABC) und im hdp Gitter (AB AB). Durch den Unterschied in der Stapelfolge entstehen zwei verschiedene Kristallstrukturen.

Alle Kristallbaudefekte erhöhen die Festigkeit und verringern die Leitfähigkeit von Metallen. Dotierung von Halbleitern erhöht deren Leitfähigkeit.

0D: Punktförmige Defekte

Fremdatome, Leerstellen etc. sind punktförmige Gitterdefekte ( Abb. 2.6). Typische Beispiele, wo Fremdatome gezielt eingebracht werden, sind elektrische Widerstände, dotierte Halbleiter oder die Mischkristallhärtung.

Zu den Punktfehlern zählen Leerstellen, substituierte Fremdatome sowie Fremd-und Grundatome auf Zwischengitterplätzen (interstitiell). Leerstellen stehen im thermodynamischen Gleichgewicht. Ihre Konzentration ergibt sich aus der Arrhenius-Beziehung

Abb 26 Beispiele für Punktdefekte Leerstelle Zwischengitteratom - фото 23

Abb. 2.6 Beispiele für Punktdefekte: Leerstelle, Zwischengitteratom, interstitielles Fremdatom auf Zwischengitterplatz (Einlagerungsfremdatom), Substitutionsfremdatom auf Gitterplatz (Austauschfremdatom). Die Kombination von Leerstelle und Zwischengitteratom wird Frenkel-Defekt genannt und spielt für Diffusionsprozesse eine Rolle. Statistisch unregelmäßig im Kristall verteilte Einlagerungs- oder Austauschfremdatome führen zu Mischkristallen.

Grundlagen der Funktionswerkstoffe für Studium und Praxis - изображение 24

wobei:

NV(T) Leerstellenkonzentration bei Temperatur T ,
N 0 Leerstellenkonzentration bei Raumtemperatur,
UB Bildungsenergie für Leerstellen,
k Boltzmann-Konstante

Die Leerstellenkonzentration beträgt bei Raumtemperatur etwa 10 -12(d. h. eine Leerstelle auf 10 000 × 10 000 × 10 000 Atome), nahe bei der Schmelztemperatur ca. 10 -4(d. h. eine Leerstelle auf ca. 22 × 22 × 22 Atome). Mit Hilfe von Leerstellen können Atome ihre Plätze wechseln und werden ,,beweglich“. Aus dieser Tatsache heraus ergibt sich die Bedeutung der Leerstellen für den Stofftransport im festen Zustand (Diffusion).

MischkristallFremdatome in einem Kristall werden auf regulären Gitterplätzen eingebaut (Substitutionsatome in Austauschmischkristallen) oder, wenn sie genügend klein sind (z. B. Kohlenstoffatome in Stahl), auf Zwischengitterplätzen eingelagert (interstitielle Atome in Einlagerungsmischkristallen). Werden Fremdatome im Sinne einer Legierungsbildung in einen Kristall eingebaut, so spricht man von einer festen Lösung bzw. einem Mischkristall.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Grundlagen der Funktionswerkstoffe für Studium und Praxis»

Представляем Вашему вниманию похожие книги на «Grundlagen der Funktionswerkstoffe für Studium und Praxis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Grundlagen der Funktionswerkstoffe für Studium und Praxis»

Обсуждение, отзывы о книге «Grundlagen der Funktionswerkstoffe für Studium und Praxis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x