Polymer Composites for Electrical Engineering

Здесь есть возможность читать онлайн «Polymer Composites for Electrical Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Polymer Composites for Electrical Engineering: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Polymer Composites for Electrical Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field
Polymer Composites for Electrical Engineering
Polymer Composites for Electrical Engineering

Polymer Composites for Electrical Engineering — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Polymer Composites for Electrical Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table 2.4 Thermal conductivity of polymeric phase change composites.

Material systems Processing methods Thermally conductive filler loading Melting enthalpy (Jg −1) Thermal conductivity (W m −1K −1) Thermal conductivity enhancement (%)
PEG/diatomite/silver nanoparticle[84] Vacuum impregnation 7.2 wt% 111.3 0.82 127
PEG/EVM/silver nanowire[51] Physical blending and impregnation 19.3 wt% 99.1 0.68 172
PEG/SiO 2/cupper[85] Sol–gel and in‐situ doping method 2.1 wt% 110.2 0.414 15
PW/silver‐PVP nanowire aerogel[87] Vacuum impregnation 5.43 wt% ∼163 0.49 ∼133
PEG‐co‐ N , N ′‐dihydroxyethyl aniline/single‐walled CNT[88] Vacuum evaporation 100.5 0.334 25
PEG/single‐walled CNT[90] Solution blending 10 wt% 165.4 3.43 1329
PEG/SiO 2/CF[91] Sol–gel and in‐ situ doping method 3 wt% 142.6 0.45 73
PEG/EG[54] Melt blending 10 wt% 161.2 1.324 344
PEG/GO/GNP[92] Solution blending 6 wt% 167.4 1.72 493
PEG/unsaturated polyester resin/GNP[93] Free radical copolymerization and solution blending 2 wt% 140.8 0.67 131
PEG/single‐walled CNT[89] Vacuum impregnation 8 wt% 162.1 2.73 950
PEG/GNP[89] Vacuum impregnation 4 wt% 169.3 3.11 1096
Poly(hexadecyl acrylate)/cellulose/graphene[94] Atom transfer radical polymerization (ATRP) and injection molding 9 wt% 78 1.32 560
PEG/biological porous carbon[16] Vacuum impregnation 14.6 wt% 158.8 4.489 953
PEG/cellulose‐graphene aerogel[68] Vacuum impregnation 5.3 wt% 156.1 1.35 463
PEG/microcrystalline cellulose‐GNP aerogel[95] Vacuum impregnation 1.51 wt% 182.6 1.03 232
PEG/GO‐GNP aerogel[55] Vacuum impregnation 2.23 wt% 181.5 1.43 361
PEG/cellulose nanofiber‐GNP hybrid‐coated melamine foam[96] Vacuum impregnation 0.65 wt% 178.9 0.26 189
PEG/Si 3N 4nanowires[97] Solution blending 10 wt% 152.3 0.362 89
PEG/SiO 2/Al 2O 3[99] Ultrasound‐assisted sol–gel and in‐situ doping method 12.6 wt% 123.8 0.435 21
PEG/EVM/SiC nanowires[100] Physical blending and impregnation 3.29 wt% 64.93 0.53 96
PEG/epoxy/BN[101] Melt blending and curing 40 wt% 60.7 2.962 ~887
PEG/GO/BN[17] Solution blending 34 wt% 107.4 3.00 900
PEG/crosslinked cellulose ‐chitosan/BN[102] Interfacial polyelectrolyte complex spinning 47.4 wt% 48.3 4.005 2256
PEG/chitosan‐BN scaffold[103] Nondirectional freezing and vacuum impregnation 27 wt% 136.9 2.77 ~794
PEG/cellulose‐BN nanosheet scaffold[69] Vacuum impregnation 10 vol% 136.8 4.764 ~1344
PEG/GO‐BN scaffold[104] Nondirectional freezing and vacuum impregnation 19.2 wt% 145.9 1.84 479
PEG/aligned GO‐BN scaffold[66] Unidirectional freezing and vacuum impregnation 28.7 wt% 143.6 3.18 864
PEG/silver‐graphene[57] Solution blending 8 wt% 166.1 0.414 95
PEG/BN‐GNP[106] Solution blending 31 wt% 122.2 1.33 329

(2.2) Polymer Composites for Electrical Engineering - изображение 25

where m is the mass, 𝛥 H is the phase change enthalpy determined by differential scanning calorimeter (DSC), U and I , respectively, represent the applied voltage and current, and t is phase change time.

The majorities of the systems used to conduct electro‐to‐heat conversion are organic non‐polymeric solid–liquid PCMs. Leakage‐proof phase change composites composed of microcrystalline cellulose/GNPs aerogel and PEG have been reported. The conductive composites have the ability of electrical energy transition and release ( Figure 2.7a).[95] When an electrical field is applied, electrical energy can be inverted into thermal energy by generating Joule heat. Once the accumulated heat reaches the phase transition temperature of working substance, phase change and heat storage behaviors occur. Likewise, shape‐stabilized PW‐based composites containing commercial melamine foam incorporated by GO and GNPs exhibited high electrical conductivity (2.787 S cm −1) at a filler loading of 4.89 wt% and efficient electro‐to‐heat conversion capacity with an efficiency of 62.5%.[113] In addition, Chen et al.[114] employed solid–solid PCMs to realize electro‐to‐thermal energy conversion. PEG was introduced into graphite foam and then in‐situ polymerized, giving rise to the formation of PU‐based solid–solid phase change composites. When a relatively low voltage of 1.2 or 1.4 V is applied, the phase change composites can complete the electro‐to‐heat conversion, and the estimated conversion efficiency is above 80%. Also, an efficient electro‐to‐heat conversion for PU‐based solid–solid phase change composites has been achieved after introducing electrically conductive graphene aerogel.[115, 116]

2.4.2 Light‐to‐Heat Conversion

Not only can electricity be converted into thermal energy, but also solar energy can be transformed into heat and stored in PCMs. Solar energy, a renewable and clean energy source, is considered to be one of the most effective methods to solve the energy shortage issue. However, there are still technical challenges in the effective utilization of solar energy owing to the intermittence and discontinuity of solar radiation in time and space, which can be exactly solved with the assistance of PCMs storing and releasing heat during the phase transition process. The weak photoabsorption capacity of PCMs makes them unable to convert solar energy into heat directly and effectively. In recent years, dyes,[117] carbon materials (biomass carbon,[118] CNT,[88] EG,[119] graphene,[94] and GO[120]), polydopamine (PDA),[121] Fe 3O 4@graphene,[122] and MXene[70] have been employed as photothermal absorbers for PCMs to realize the efficient conversion and storage of solar energy. The solar‐to‐heat conversion and storage efficiency ( η s) can be calculated from the ratio of the stored heat with respect to the input solar energy according to the light‐thermal calculation Eq. (2.3).

Figure 27 Energy conversion routes associated with polymeric phase change - фото 26

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Polymer Composites for Electrical Engineering»

Представляем Вашему вниманию похожие книги на «Polymer Composites for Electrical Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Polymer Composites for Electrical Engineering»

Обсуждение, отзывы о книге «Polymer Composites for Electrical Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x